Fluid and electrolyte disturbances in children

Block 11 Prof G van Biljon

Introduction

 Children with disorders of Na⁺ balance present with complaints referable to ECF :

Volume expansion (volume overload / oedema) or

Volume contraction (dehydration)

• Loss of >10 % of ECF volume \rightarrow at risk of hypovolaemic shock

- TBW (total body water) constitutes
 - 60 % in an adult
 - 70 % in an neonate
 - > 80 % in a premature
- TBW varies inversely with fat content
- TBW is distributed into 2 major compartments: Extra- and intracellular

Physiology

- In infants ECF consists of $\pm 1/3$ of TBW
- ECF consist of
 - Plasma volume and
 - Interstitial fluid
- Na⁺ is the predominant cation in the ECF
- Na⁺ is the major component and major determining osmolyte in the serum

Physiology

- Na⁺ cannot freely move across cell membranes
- Water can move freely across cell membranes
 - \rightarrow thus Na⁺ determines water distribution in the body compartments
- S-Osmolarity = 2 x S-Na⁺ + S-urea + S-glucose
- Normal S-Osmolarity = 270-280 mOsmol/L

Hyponatraemia

- Defined as S-Na⁺ sodium <130 mmol/L
- Differentiate between 2 groups
 - Total body Na⁺
 - \downarrow Total body Na+
- Causes of \downarrow S-Na⁺
 - External loss of Na
 - Gain of excess water -fluid overload

Conditions associated with a deficit or an excess of total body Na⁺

Condition	Deficit (hypovolemic)	Excess (hypervolemic)
Gastro- intestinal	Diarrhoea Vomiting (pyloric stenosis)	Cirrhosis
Renal	Medications (diuretics) Renal tubular diseases	Nephrotic syndrome Acute renal failure

Conditions associated with a deficit or an excess of total body sodium (cont)

Condition	Deficit (hypovolaemic)	Excess (hypervolaemic)
Cardiac		Congestive heart failure
Adrenal	Addison's disease Congenital adrenal hyperplasia	Conn's syndrome Cushing's syndrome Steroid treatment
Skin	Cystic fibrosis	
latrogenic	Diuretic therapy (hydrochorothiazide)	Hypotonic IV fluid

Volume contraction

Severe dehydration Sunken eyes Loss of skin turgor Dry mucous membranes Limp/ non-responsive

Volume overload Nephrotic Syndrome

Generalised oedema

Assessment of Na balance and ECF volume

• History

- Underlying disease
- Food and fluid intake, vomiting
- Diarrhoea, stool frequency, nasogastric tube drainage
- Weight loss & urine output

Physical findings

- Laboratory results
 - Urine osmol, U-Na⁺,Cl, K⁺, Creatinne, FeNa⁺%,
 - S-UKE, glucose and osmol

Clinical features of \downarrow S-Na+ with hypervolaemia

- Periorbital oedema
- Swollen extremities
- Ascites
- Signs of hypoproteinaemia

Special investigations

 blood and urine biochemistry are necessary to diagnose hyponatraemia and related disturbances

- Depends on the underlying cause
- Associated with stimulation of reninangiotensin system

Changes in body weight during treatment of a child with fluid and electrolyte provide practical guide - thus

Weigh the child on admission Weigh again at frequent intervals Monitor urine output

Treatment of Hypo-Na⁺ or Hyper-Na⁺

Focused on how to avoid the neurological complications which can potentially occur > During the course of untreated dysnatraemias or

Which may develop after inappropriate correction of these disorders

Modern approach to rehydration therapy

- Keep things simple: aim for oral rehydration
- Assess circulation if shocked –
- Resuscitate with isotonic fluid bolus: 0.9% NaCLIV
- Once shocked has been treated effectively
- Continue rehydration according to estimated dehydration: Mild/moderate/severe
- Oral rehydration (NG tube if necessary)
- Armon K, Stephenson T, MacFaul R, Eccleston P *et al*. An evidence and consensusbased guideline for acute diarrhoea management. Arch Dis Child 2001; 85: 132 - 142

Rate of fluid replacement

Depends on

- underlying cause
- severity of dehydration
- ongoing losses

Acute isotonic dehydration

Rehydrate over 4-6 hrs

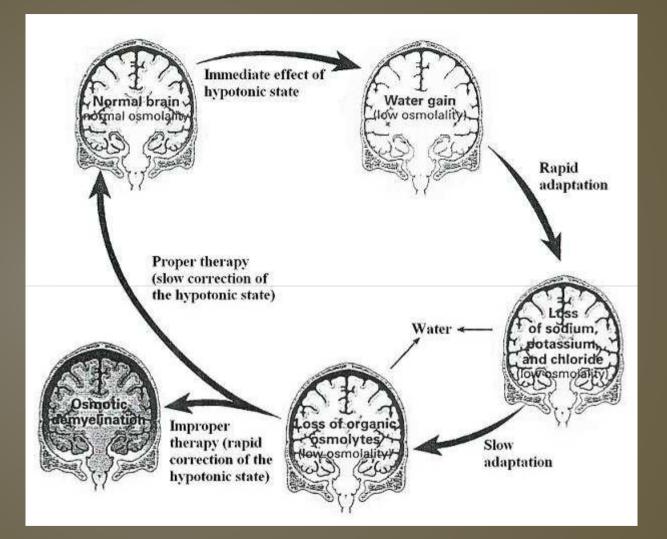
Reassess frequently -

• Weigh the child every 12-24 hours

For severe dehydration due to gastroenteritis

- Replacement fluid ½ Darrows in 5% Dextrose IV (½ D/D)*
- Give more if stool output is very high
- Start oral rehydration solution* once shock has been treated
- Review regularly
- * (Study contents of $\frac{1}{2}$ D/D and oral rehydration solution)

Treatment of hyponatraemic dehydration


First treat shock

- Restore circulating blood volume
- Bolus isotonic fluid (0.9% NaCl) 20 ml/kg IV rapidly
- Repeat once more if shock is still present
- Then start IV rehydration ± Na⁺ replacement
- NOTE : Na⁺ is replaced only if S-Na⁺ <120mmol/L + patient is symptomatic

Na⁺ repletion for symptomatic \downarrow S-Na

• Calculate Na⁺ deficit:

- 0.6 x weight x [desired S-Na⁺ minus actual S-Na⁺]
- Desired S-Na⁺ = 125 mmol/L to avoid over correction
- Add calculated Na⁺ deficit to replacement fluid
- Correct S-Na⁺
 - At a rate to increase S-Na \leq 1 mmol/L per hour
- Replace Na⁺ deficit slowly over 48 hours to prevent neurologic complications
- Normal daily dietary Na⁺ requirement 1-2 mmol/kg

Management of \downarrow S-Na⁺ associated with hypervolaemia

- Depends on the underlying cause
- With \downarrow GFR \downarrow S-Na⁺ develops due to fluid overload
- Treatment
 - Restrict fluid and NaCl intake
 - Diuretics

Hypernatraemia

= Serum sodium >150 mmol / L
> 90 % caused by diarrhoeal losses of water
Other causes
Too concentrated milk formula

- Incorrect reconstitution of ORS
- Salt added to infant foods
- Child abuse (enforced thirst, lack of feeding)
- Diabetes insipidus (central/nephrogenic causes)

Clinical features of \uparrow S-Na & hypovolaemia

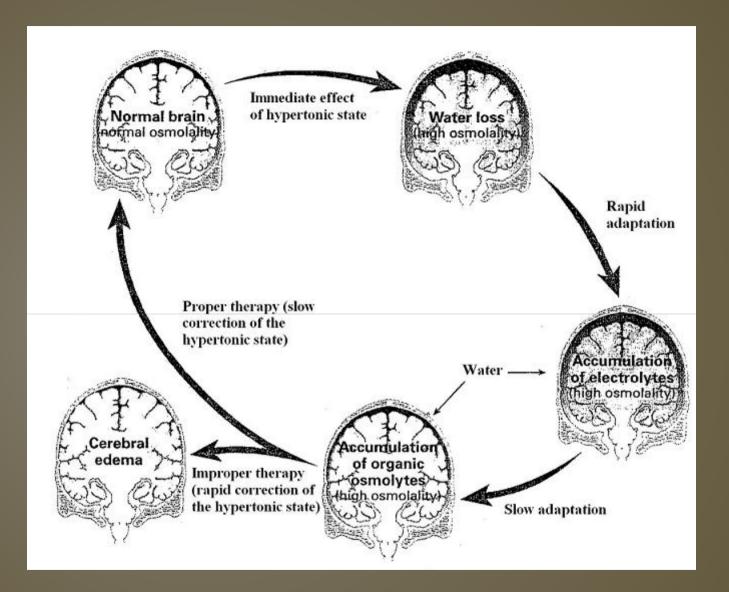
- Dehydration is more subtle in fat babies
- Hypotension is a late phenomenon
- Skin feels doughy
- Intracellular dehydration \rightarrow CNS signs
- Irritability, lethargy, seizures and coma

Pathophysiology

- With gradual [↑] S-Na⁺ brain cells produce idiogenic osmoles (adaption)
- \rightarrow Compensatory \uparrow intracellular osmolality and prevents cellular dehydration
- Aggressive treatment with hypotonic fluids may cause cerebral oedema
- $\bullet \rightarrow$ Coma, convulsions and death

Clinical features of hypernatraemic dehydration

- Neurological
 - Irritability, lethargy and thirst
- Dehydration
 - Sunken fontanel / eyes
 - Dry mucous membranes, \downarrow turgor
 - Tachypnoea- to compensate for metabolic acidosis
- CVS
 - \uparrow pulse and \downarrow BP
 - \downarrow central venous pressure
 - ↑ Capillary refill time


Management of Hypernatraemic Dehydration

First treat shock(if present) with IV isotonic fluid e.g. 0.9% NaCI (Na = 154 mmol/L)

- Bolus of 20ml / kg IV stat
- May repeat once if patient is still in shock
- After successful treatment of shock continue

For severe hypernatraemic dehydration

- Continue with
 - ½ Darrows in 5% Dextrose IV at slower rate rehydrate over 24-48 hours
- Start oral rehydration slightly later patient may be very thirsty and drink too much
- Review regularly
- Increase oral rehydration gradually

Oedema in children

- Two major groups, i.e.
- With proteinuria
 - E.g. nephrotic syndrome
- Without proteinuria
 - ↑ Vascular permeability e.g.
 - Premature babies, septicaemia
 - ↑ Hydrostatic pressure e.g.
 - Heart failure and hypertension
 - \downarrow Oncotic pressure e.g.
 - Malnutrition & cirrhosis

Pathophysiology of oedema

Two mechanisms

- 1 retention of Na⁺ and water by the kidney

Patients with oedema may have

- \downarrow intravascular volume
- normal intravascular volume
- ↑ effective ECF volume
- Must differentiate between these conditions as this influence therapy

Use of colloid solutions

- Colloid solutions are not used
 - to treat oedema
 - for rehydration
 - to restore albumin levels

Limited indications e.g.

 Salt free albumin infusion in nephrotic syndrome only used for severe hypovolaemia associated with hypovolaemic shock and oliguria

Treatment of oedema associated with hypervolaemia

- Treat the underlying condition
- Oedema will settle spontaneously
- Inappropriate colloid infusions may cause acute circulatory overload and pulmonary oedema

Polyuria

• Clinical disorders of \downarrow urinary concentration • \downarrow ADH

Central diabetes insipidus (failure to synthesize or secrete ADH)

- Normal or [↑]ADH
 - Renal insensitivity to ADH =nephrogenic diabetes insipidus NDI

Clinical features of CDI

Rare

- Patients have polydipsia > for cold water
- Severe polyuria and nocturia

Nephrogenic DI

- Congenital NDI
 - Rare inherited condition
 - Renal tubules insensitive to ADH
 - X-linked dominant
- Clinical features
 - dehydration, vomiting, fever, constipation
 - \downarrow growth ± mental retardation
- Laboratory investigations
 ↑ S-Na+, ↓ U-osmol and dehydration

Acquired NDI

- More common than inherited NDI
- Urine may be relatively hypertonic
- Have moderate polyuria and polydipsia

Other causes of ψ urinary concentration

Drugs

Aminoglycocides, furosemide, vancomycin

- Diuretic phase of acute tubular necrosis
- Renal tubular diseases
- Adrenal insufficiency
- Chronic kidney disease