Haemolytic anaemias

Dr. J Potgieter Department of Haematology NHLS Tshwane Academic Division

Red Cell Destruction

- Extravascular in macrophages of RES (BM, liver, spleen)
- Haem to iron and protoporphyrin
- Globin to amino acids
- Hb binds to haptoglobin and the complex is removed by the liver. Haptoglobin is produced by the liver – low levels in haemolysis and liver disease
- Pathological red cell destruction may occur intravascular

Clinical Features

- Anaemia (unless compensated)
- Jaundice (mild)
- Splenomegaly (many types)
- Ankle ulcers (e.g. sickle cell anaemia)
- Pigment gallstones
- Bone expansion in children due to marrow expansion (e.g. frontal bossing)
- Aplastic crises (Parvo virus or folate deficiency)

Lab Features

- Normal or reduced Hb
- Biochemistry: raised unconjugated bilirubin, low haptoglobin, increased f-stercobilinogen & uurobilinogen, raised LDH
- Increased reticulocyte count
- Bone marrow: hyperplastic erythropoiesis
- Blood film: polychromasia, normoblasts. red cell shape changes (e.g. schistocytes, spherocytes)

Lab Features

- Radioactive chromium labeling of red cells
 - > Measures lifespan
 - > Assess sites of destruction
- Intravascular haemolysis
 - Increased plasma & urine Hb
 - Methaemalbumin
 - > Urine-haemosiderin

Causes of intravascular haemolysis

- Mismatched blood transfusions
- G6PD-deficiency with oxidant stress
- Red cell fragmentation syndromes
- Some auto-immune haemolytic anaemias
- Some drug and infection induced haemolytic anaemias
- Paroxysmal Nocturnal Haemoglobinuria
- March haemoglobinuria
- Unstable haemoglobins

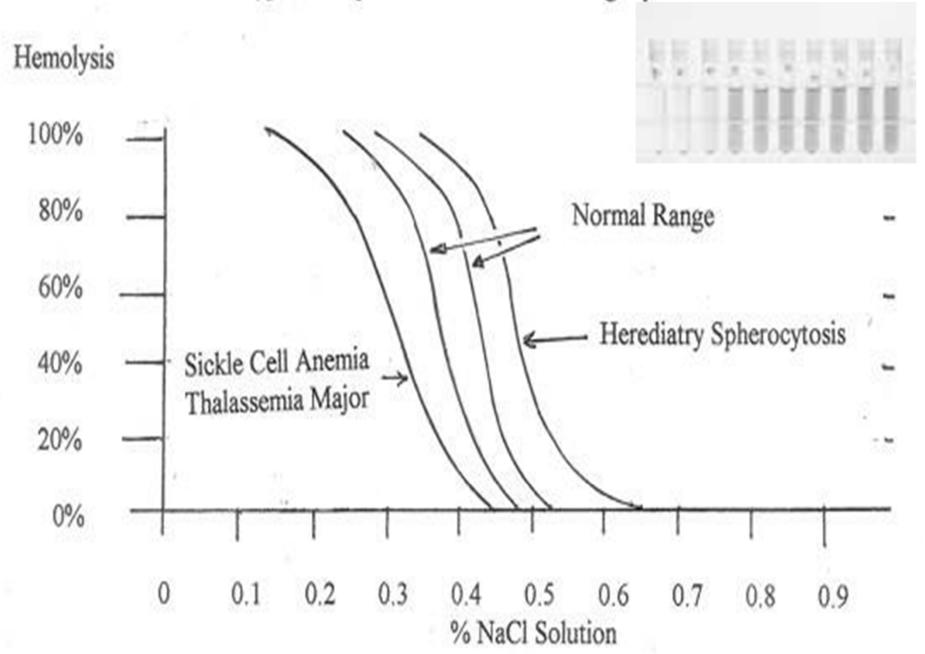
Classification of haemolytic anaemia

Hereditary	Acquired
Membrane	∎Immune
Hereditary spherocytosis	Autoimmune:
Metabolism	Warm antibody type: Idiopatic/secondary
G6PD deficiency	Cold antibody type: Idiopathic/secondary
∎Haemoglobin	Alloimmune
HbS, HbC	Haemolytic transfusion reaction
	HDN
	Red cell fragmentation syndromes
	■Infection
	Chemical and physical agents
	■PNH

Inherited Haemolytic Anaemias Membrane Abnormalities

- 1. Hereditary spherocytosis
- Whites, AD (variable severity); 25% new mutation
- Deficient/abnormal RBC membrane proteins (vertical)
- Lipid bilayer unsupported causing loss of lipid/membrane passing through RES (esp. spleen) – low surface area:volume
- Spherocytes less deformable and osmotically fragile
- K⁺ loss and dehydration

Clinical features

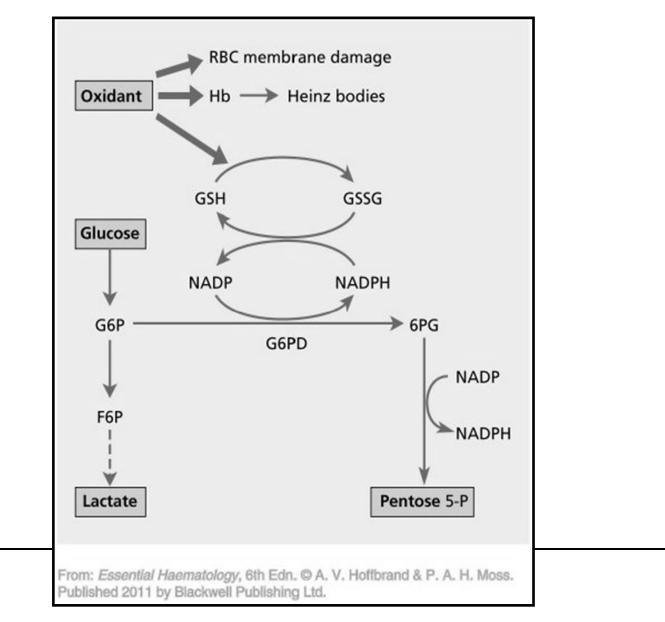

- Mild anaemia, splenomegaly, mild jaundice
- Severe transfusion-dependent anaemia
- Aplastic crises
- Increased haemolysis during infection
- Gall stones (50%)
- Lower leg ulcers
- Iron overload

Laboratory features

Hb varies

- Micropspherocytes and polychromasia (reticulocytosis), occasional normoblasts
- □ MCHC increased (50%)
- Increased osmotic fragility (median corpuscular fragility –MCF) and auto-haemolysis
- Negative direct antiglobulin test
- Red cell membrane protein analysis (SDS-PAGE, sodium dodecyl sulphate polyacrylamide gel electrophoresis)

Typical Graphs for RBC Osmotic Fragility



- Treatment
 - Folic acid
 - Blood transfusion
 - Splenectomy
 - Cholecystectomy

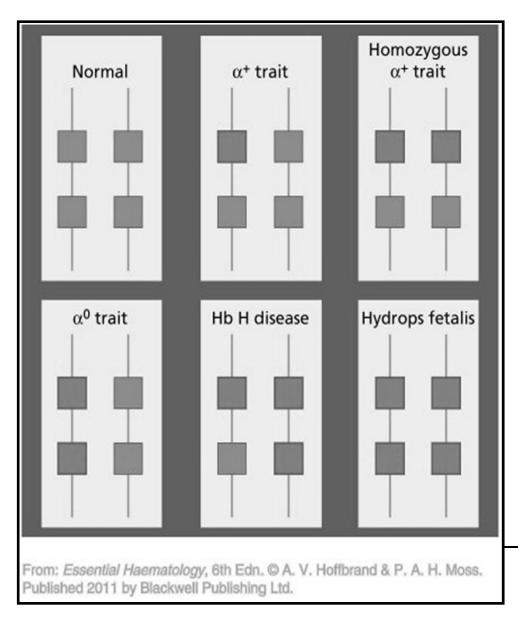
Enzyme abnormalities

- Glucose 6 phosphate dehydrogenase (G6PD) deficiency
- Deficiency renders cells susceptible to oxidant stress (e.g. drugs, infection, fava beans etc.)
- Inheritance is sex-linked
- Blacks, Mediterranean, middle eastern, oriental
- Protection against malaria

Hexose monophosphate pathway

Clinical picture

- Haemolysis 1-3 days after drug exposure or febrile illness or hours to days after ingestion of Fava beans
- Severe cases: abdominal/ back pain, dark urine
- Heinz bodies appear and Hb decreases rapidly
- Neonatal jaundice (impaired conjugation) esp. Gilbert disease
- Hereditary nonsherocytic haemolytic anaemia (chr jaundice, splenomegaly, gall stones)


Laboratory features

- Normal blood film between crises
- Bite / blister cells and polychromasia with acute intravascular haemolysis. Heinz bodies on supravital staining
- Screening test (fluorescent spot test) for generation of NADPH in steady state
- Enzyme assays and DNA analysis
- Management
 - Stop offending drug, treat infection, transfuse red cells, consider splenectomy

1. Thalassaemia

- Commonest single gene disorders
- Mediteranean region hence thalassaemia (greek Θαλασσα, meaning 'the sea')
- Autosomal recessive inheritance
- α or β depending on reduced synthesis of α or β globin chains

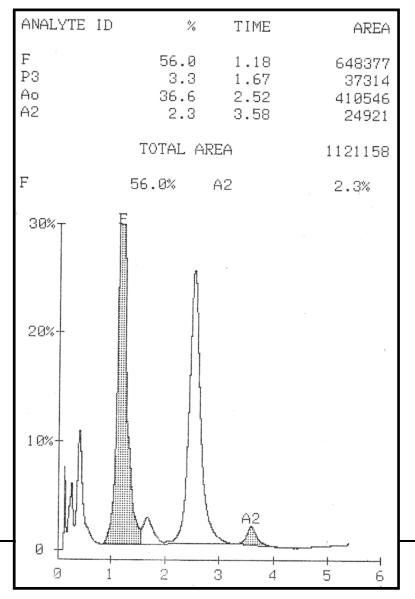
The genetics of α -thalassaemia

- Normal (αα/αα); silent carrier (α-/αα)
- α -Thal trait (α-/α-) or (--/αα). Low MCV, MCH
- HbH disease (--/α-). Hypochrome, anaemia, splenomegaly HbH
- Hydrops fetalis (--/--)

Phenotype

- B thalassaemia (β^{o}/β^{+})
 - Minor: symptomless carrier state
 - Intermedia: anaemia and splenomegaly but does not require regular transfusions
 - Major: severe, transfusion dependent

Clinical features


- □ Anaemia (3-6 months), milder cases later ≤ 4 years
- Failure to thrive, intercurrent infection, mild jaundice
- □ HSM, expansion of bones
- Iron overload

Laboratory features

- Blood film: Hypochromic microcytic anaemia, target cells and erythroblasts
- □ Raised RCC >5.5 X 10¹²/I
- HPLC
- □ Hb electrophoresis:
 - B thalassaemia maj: HbF 10-90%, HbA absent if β^o thal.
 - B thalassaemia min: HbA2 > 3,5%
- Hypercellular bone marrow (erythroid hyperplasia)
- Globin chain synthesis studies
- DNA analysis shows specific mutations

Haemoglobin electrophoresis/

HPLC

Management

- □ Maintain Hb > 9 10 g/dl
- Iron chelation therapy
- Immunise: hep B
- Splenectomy
- Bone marrow transplant

Acquired Haemolytic Anaemias

Autoimmune haemolytic anaemia (AIHA) Warm-type

- Red cells coated with IgG alone or complement
- 37°C
- Taken up by the RE macrophages
- Part of coated membrane is lost → progressively more spherical

Warm-type AIHA

Idiopathic

- > 30%
- Any age (infancy, early childhood, 3rd decade, > 5th decade)
- > Evans syndrome
- AIHA of infancy and childhood

Secondary

- SLE, other autoimmune diseases
- > CLL, lymphomas
- Drugs(e.g. fludarabine, methyldopa)
- Malignancies
- Viral infections

Clinical and Lab features

- Pallor or jaundice
- Splenomegaly (2-3 cm under costal margin)
- Blood film: microspherocytes, polychromasia, ± normoblasts
- Direct antiglobulin test positive
- IgG or IgG and complement

Treatment

- Corticosteroids (1-2mg/kg/d)
- Cytotoxic immunosuppresive drugs
 - Azathioprine (1.5-2 mg/kg/d)
 - Cyclophosphamide (1.5-2mg/kg/d)
- Cyclosporin (5mg/kg/d in 2 divided doses)
- IVIG (0.4mg/kg/d X 4-5 days)
- Splenectomy
- Blood transfusion

Cold-type AIHA

- Idiopathic cold haemagglutinin disease
 - Chronic course in older people
 - Acrocyanosis in cold weather
 - Spontaneous agglutination of red cells
 - > DAT shows C3d

- Secondary
 - Infections: mycoplasma pneumonia, infectious mononucleosis
 - > lymphoma
- Paroxysmal cold haemoglobinuria

Cold-type AIHA

- Ab whether monoclonal (ICHD) or polyclonal (infection) attaches to membrane in cooler peripheral circulation
- Usually IgM and binds best at 4°C
- Fixes complement and extra- and intravascular haemolysis can occur
- Spherocytes less marked, agglutinated red cells

Treatment

- General: management is difficult, avoid exposure to cold, folic acid supplements
- Alkylating agents: Chlorambucil intermittent or continuous
- Corticosteroids and splenectomy are rarely of use
- Blood transfusion and plasma exchange

Drug induced immune haemolytic anaemia

- Ab against drug-red cell membrane complex.
 Drug acts as hapten (penicillin)
- Ab against drug-plasma protein complex → subsequent deposition of immune complexes on red cells (quinidine, rifampicin)
- Stimulation of auto Ab against red cells (methyldopa, fludarabine)

Red cell fragmentation syndromes

- Physical damage to red cells on abnormal surfaces or fibrin strands deposited in small vessels
- Termed microangiopatic haemolytic anaemia (TTP/HUS, pre-eclampsia, meningococcal septicaemia, adeno Ca)
- Haemolysis intra and extravascular
- Fragmented red cells

- Arterial grafts, cardiac valves
- •Disseminated intravascular coagulation (DIC)
- •Thrombotic thrombocytopenic purpura (TTP)
- •Haemolytic uraemic syndrome (HUS)
- Meningococcal sepsis
- •Pre-eclampsia and HELLP syndrome

Infections

- Direct damage to red cells (malaria)
- Toxin production (clostridium)
- Oxidant stress (G6PD- deficiency)
- MAHA (meningococcal septicaemia)
- Antibody formation (infectious mononucleosis)
- Extravascular destruction (malaria)

Chemical and physical agents

- Certain drugs → oxidative intravascular haemolysis (dapsoon, salazopyrin)
- Wilson's disease → acute haemolysis due to high levels of copper in the blood
- Chemical poisoning with lead, arsine
- Severe burns damages red cells

Paroxysmal nocturnal haemoglobinuria

- Clonal disorder, acquired mutation of Xchromosome gene coding for phosphatidyl inositol glycan A (PIG-A)
- Result = Glucosyl Phosphatidyl Inositol (GPI)-linked proteins are absent from the red cell e.g:

Decay-activating factor (DAF, CD55)

Membrane inhibitor of reactive lysis (MIRL, CD59)

PNH – general features

- Red cells are sensitive to lysis with complement causing chronic intravascular haemolysis
- Haemosiderinuria leads to iron deficiency
- Recurrent venous thrombosis and infections are prevalent
- The marrow may be hypoplastic with neutropenia and thrombocytopenia

Diagnosis

- Positive acid lysis (Ham's) test
- Absence of CD55 and CD59 antigens

Management

- Supportive (folic acid, iron if deficient, blood transfusions, short course steroids, oral anticoagulation)
- BM transplant and immunosuppressive R

References

- Mehta A, Hoffbrand V. Haematology at a glance. 3rd Edition. Blackwell Science. 2009
- Hoffbrand V, Pettit J, Moss P. Essential haematology. 6th Edition. Blackwell Science. 2011