Inherited Kidney Diseases and Developmental Abnormalities of the Urogenital Tract

Block 11

Prof G van Biljon
Congenital Abnormalities of Urogenital Tract

• **Congenital abnormalities of the UGT are common**
 – Occurs in up to 10% of the population
 – Contributes to $\frac{1}{3}$ of all congenital abnormalities

• **Discovered when complications develop**
 – UTI
 – Abdominal mass palpated
 – Investigation for poor weight gain
 – Routine urine test (co- incidental finding)

• **Often detected with routine antenatal u/s**
Embriology

The kidney originates from two main structures

- **Ureteric bud** –
 Abnormal development affects the –
 - Renal collection system
 - Calyces
 - Pelvis & ureter

- **Metanephros (Metanephric blastema)**
 Abnormal development affects the –
 - Nephrons
Genitourinary Tract Embriology

- Pronephros
- Mesonephros
- Metanephros
- Intermediate mesoderm
- Cloaca
- Ureteric bud
- Metanephric blastema
Development of UGT at 6-8 weeks
Renal Parenchymal Abnormalities

- **Renal agenesis / renal hypoplasia**
 - Result of abnormal induction of nephrogenesis
 - Apoptosis is a programmed form of cell death
 - Due to imbalance of apoptotic and growth factors
 - ↑ apoptosis or
 - Relative deficiency of cellular growth factors
Renal Agenesis and Hypoplasia

• Renal agenesis = absent kidney

• Hypoplasia = kidney $\leq \frac{1}{3}$ of normal size
 – May occur uni- or bilaterally
 – 90% is sporadic
 – 10% is familial
Unilateral Renal Hypoplasia

• Patients usually remain asymptomatic

• Contralateral kidney
 – Compensatory hypertrophy
 – Compensatory function

• Renal function is normal

• Occasionally hypertension develops
Renal outcome of children with one functioning kidney from birth

Study of 99 patients and a review of the literature

Does progressive CKD develop in patients with a single functioning kidney from birth within a period of 10 years?

Vu K-Hahn Van Dyck M et al
Pediatr Nephrol 2008;167: 885-89
Literature

- 9 ± comparable studies on fate of solitary kidneys in childhood over past 22 yrs
- All indicate: variable % will develop HT, ↓ GFR and proteinuria
- Study that best illustrates the risk of solitary kidney: (Baudoin et al)
 - heterogeneous cohort of 111 patients
 - nephrectomy < 16 years
 - demonstrate that the incidence of
 - ↓ GFR, HT, and proteinuria increases with time to become striking with FU of over 25 years
Conclusion

Individuals with single functioning kidney for whatever reason deserve long-term FU during and after childhood.
Bilateral Renal Hypoplasia

- Degree of renal functional impairment varies
- Clinical problems:
 - polyuria
 - polydypsia
 - dehydration
- Tubulopathy: “salt-losing nephropathy”
 - → poor growth
- Develop progressive renal functional impairment
Bilateral Renal Agenesis

- Occurs in 1/4000 pregnancies
- Mother has oligohydramnios
- Baby has Potter Sequence
- Baby dies shortly after birth due to respiratory distress / hypoplastic lungs
Cystic Renal Diseases

• Multicystic kidney

• Polycystic Kidney Disease
 – Autosomal Recessive PCKD
 – Autosomal Dominant PCKD
 – Medullary Cystic Kidneys
Multicystic Kidney

- Usually unilateral

- Morphology
 - Large irregular mass
 - Consists of undifferentiated *dysplastic* elements and cysts of different sizes

- Non-functional kidney

- Associated with pelvis/ureter abnormalities on contralateral side

- Because MCDK is usually unilateral, it is
 - Asymptomatic or
 - Discovered when abdominal mass is detected
Multicystic Dysplastic Kidney
Polycystic Kidneys (PCKD)

• Inherited kidney diseases

• Two different forms of inheritance
 – Autosomal Dominant (ADPCKD)
 – Autosomal Recessive (ARPCKD)

• Bilateral enlarged kidneys
ADPCKD ("Adult PCKD")

- Incidence 1/1000 of the general population
- Bilateral large kidneys, with normal shape
- Large cysts of varying sizes
 - May have cysts in liver, lungs and pancreas
- Usually symptomatic by 3rd to 4th decade
- Presents with HT, UTI and CRF
- Cerebral aneurisms -\↑ risk of intracranial haemorrhage
ADPCKD
("Adult PCKD")
Large kidneys
Discreet cysts
Varying sizes
Areas of normal parenchyma
ARPCKD ("Infantile PCKD")

- Bilateral large kidneys, normal shape
- **Small cysts**
- Invariably associated with **hepatic fibrosis**
- Two peak periods of presentation
 - **Neonate** –
 - Potter sequence due to oligohydramnios
 - RDS due to hypoplastic lungs, respiratory failure
 - **Older child** –
 - Poor growth
 - Severe hypertension
 - CRF and hepatic fibrosis
ARPCKD
Diffuse small cysts & bilateral renal enlargement
ARPCKD
Developmental Abnormalities of the Ureteric Bud & Urinary Drainage System

Pelvo-Ureteric Junctional Obstruction (PUJ)

– Dilated pelvis

– Usually unilateral

– Contralateral kidney may have abnormality -

 • Vesico-ureteric reflux (VUR)

 • Cystic dysplastic kidney
Vesico-Ureteric Reflux (VUR)

- More common in Caucasians compared to Blacks
- Genetics play a role
- Occurs in 30-50 % sibs of index case
- Usually presents with recurrent UTI
Pathogenesis of VUR

- Abnormal development of the ureteric bud
- VUR more common in young babies
- May outgrow VUR by age 2 years
- In adults the ureters
 - pursue a 1-1.5 cm sub-mucosal oblique course through the bladder wall – longer tunnel
- In infants the ureters
 - have a shorter tunnel and open perpendicular into the bladder wall
Etiology and Pathogenesis of VUR

• Pathologically refluxing ureters
 – Located more lateral and cephalad in the bladder
 – Short submucosal tunnel
 – Perpendicular course through bladder wall
 – Gaping opening in the bladder
5:1 tunnel length to wall ratio

Paquin (1959)
Aetiology of VUR

Balance of functional and anatomical factors
International Classification
Vesico-Ureteric Reflux Grades
Voiding cystogram
Grade I VUR in the right ureter
VCUG
Right Grade IV
VUR
VCUG

- Grade V VUR
- Severe hydronephrosis
- Blunting of calyces
- Thinning of renal cortex
- Tortuous and wide ureters
Developmental Abnormalities of the Urethra

Congenital Obstructive Posterior Urethral Membrane (COPUM)

- Usually in boys (95%); rarely in girls
- Developmental abn. of the posterior urethra \rightarrow outlet obstruction of the bladder
- Associated with
 - oligohydramnios
 - varying degrees of renal dysplasia
- If oligohydramnios develops before 16th week of gestation \rightarrow very poor prognosis
Clinical Presentation

• Potter sequence

• Respiratory distress at birth

• Bilateral palpable kidneys

• Bladder palpable above pubis

• Dribbling of urine or total obstruction

• May present with urinary ascites
Prune Belly Syndrome

- Consists of triad:
 - Non obstructive megacystis
 - mega-ureter and hydronephrosis
 - Absence of abdominal wall muscles
 - Undescended testes (cryptorchidism)
Potter Facies
Voiding cysto-urethrogram

Dilated posterior urethra
Indentation by prominent bladder neck
Small trabeculated bladder
Voiding cysto-urethrogram

Dilated posterior urethra
Indentation : Narrowing
Trabeculated bladder
Recommendations

• All patients with congenital abnormalities of kidneys or single functioning kidneys deserve regular FU
• At 2 years kidney function is mature – good time to evaluate kidney function
• At all visits do
 – Growth assessment
 – Blood pressure
 – Urine dipstix
 – Spot u: protein:creat ratio or micro albuminuria (marker of glomerular hypertrophy and hyperfiltration)
 – GFR should be estimated once a year
• If signs of progression are documented, ACEI may be indicated
References

Illustrations, diagrams and photos

• Thomas DFM, Rickwood AMK, Duffy PG. Essentials of Paediatric Urology. London: Martin Dunitz Ltd; 2002