
Laboratory Investigation of Male Gonadal Function

Dr N Oosthuizen Dept of Chemical Pathology UP 2010

Figure 1. Hypothalamic-pituitary-testicular axis

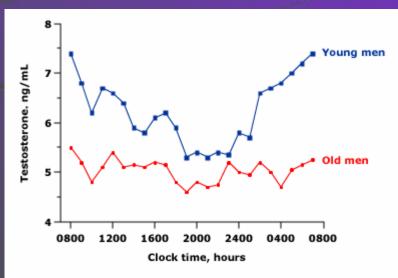
Testosterone (T) measurement

60% of T is strongly bound to SHBG
38% of T is weakly bound to albumin
2% of T is free
Free and albumin-bound fractions are

"bioavailable"

Free T assay is technically demanding

 Most labs calculate free or bioavailable T using [total T], [SHBG], [albumin]
 Online calculator at


http://www.issam.ch/freetesuit.htm

Testosterone measurement (cntd)

Free androgen index

- (FAI) = [total T]/[SHBG] x 100
- Use FAI only in females
- Overestimates free T in males

 Diurnal variation in T with max values at 08h00; min values at 20h00

Table 1. Effects of T deficiency according to age at onset

Age	Effects of T deficiency
1 st trimester in utero	Incomplete virilization of external genitalia
	Incomplete development of Wolffian ducts to form male internal genitalia
3 rd trimester in utero	Micropenis
	Cryptorchidism
Pre-puberty	Incomplete pubertal maturation
	Eunuchoidal body habitus
	Poor muscle development and reduced peak bone mass
Post-puberty	Decreased energy, mood, libido
	Decreased sexual hair, Hct, muscle mass and strength, BMD
	Infertility

Table 2. Causes of abnormal SHBG

Increased SHBG	Decreased SHBG		
Anorexia nervosa	Obesity		
Hyperthyroidism	Hypothyroidism		
Androgen deficiency	Androgens		
Liver cirrhosis	Glucocorticoids		
Excess oestrogens	Nephrotic syndrome		
HIV infection			
Systemic illnesses			
Aging			

Male gonadal dysfunction

Presenting complaints:

- Delayed puberty (no onset by 14y)
- Infertility
- Erectile dysfunction
- Gynaecomastia

Laboratory tests

- Prolactin
- Testosterone, SHBG, cFT or bioavailable T
- LH, FSH
- TSH and FT4
- Karyotype (selected pts)
- Semen analysis
- Cortisol, iron studies

Male gonadal dysfunction (cntd)

- 1° (hypergonadotrophic) hypogonadism
 - ↓T; ↑LH; ↑FSH; azoospermia
 - Testicular failure (see table 3.)
 - Selective germ cell dysfunction
 - $\Rightarrow \leftrightarrow T; \leftrightarrow LH; \uparrow FSH; azoospermia$
 - Selective Leydig cell dysfunction
 - ↓T; ↑LH; ↔FSH; normozoospermia
- ◆ 2° (hypogonadotrophic) hypogonadism
 ✓ ↓T; ↓/↔LH; ↓/↔FSH
 - Hypothalamic-pituitary pathology (see table 3.)
 - − ↑ prolactin and systemic disease
 - Fertile eunuch sd is a form of IHH with ↓T; ↓/↔LH; ↔FSH; normozoospermia

Table 3. Causes of male hypogonadism

1° hypogonadism (\downarrow T, \uparrow LH/FSH, impaired sperm production)

Genetic syndromes (Klinefelter's sd 47XXY, 45XO or mosaicism, streak gonads, myotonic dystrophy, Noonan's sd)

Cryptorchidism (untreated)

Vanishing testis syndrome

Testicular insults (trauma, torsion, infectious orchitis, radiation, chemoTx, drugs, autoimmune, HIV infection, haemochromatosis)

Androgen receptor defects (testicular feminization)

5- α -reductase deficiency

LH receptor defects

2° hypogonadism (\downarrow T, \downarrow or \leftrightarrow LH/FSH)

Genetic syndromes (Kallman's, Prader-Willi, idiopathic hypogonadotrophic hypogonadism [IHH], GnRH deficiency)

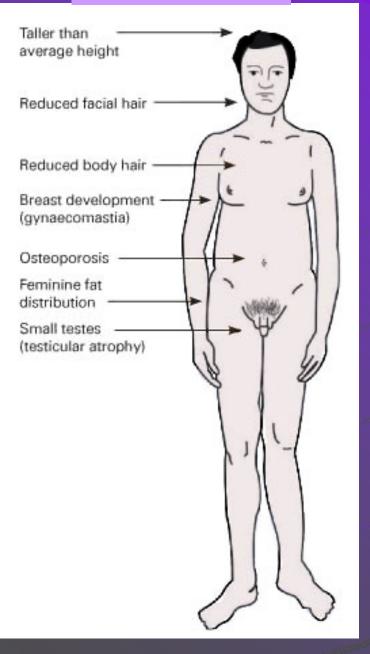
Hypothalamic-pituitary insults (trauma, insufficiency, tumours, infiltrates e.g., haemochromatosis, sarcoidosis; infections)

Systemic conditions (liver disease, ESRF, HIV infection, hyperprolactinaemia, excessive exercise, eating disorders, severe obesity)

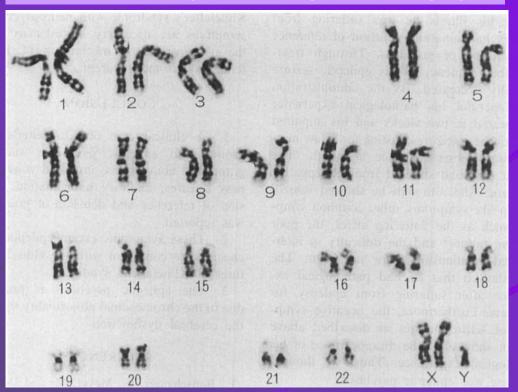
Drugs (opiates, anabolic steroids, alcohol, marijuana)

Sperm transport disorders (↔T, ↔ LH/FSH, ↓ semen fructose)

Obstruction of epididymus/vas deferens (cystic fibrosis, congenital absence)


Case study - 1° hypogonadism

An 18-year-old boy with tall stature, gynaecomastia, and behavioural problems
On exam he was found to have small testes and sparce facial and pubic hair


Plasma	
Karyotype	47XXY
LH (1.5-11.5)	34 U/L ↑
FSH (3-15)	76 U/L ↑
Testosterone (7-28)	6 nmol/L ↓

Diagnosis: Klinefelter's sd (1:500)

Eunuchoid habitus

Chromosomal analysis revealing 47 XXY karyotype

Case study – complete androgen insensitivity syndrome

 18-year-old girl with 1° amenorrhoea and sparse axillary/pubic hair, despite good breast development

 Further exam revealed short, blind-ending vagina, no uterus/ovaries and intra-abdominal testes

Plasma with female RR's			Male RR
Karyotype	XY		
E ₂ (100-590)	73 nmol/L	\mathbf{V}	E ₂ (<180)
LH (1.5-11.5)	27 U/L	\uparrow	LH (1.5-9.0)
FSH (3-15)	1.7	\checkmark	FSH (1.5-9.0)
Testosterone (0.8-2.8)	25 nmol/L	\uparrow	Testosterone (7-28)

CAIS = testicular feminization

Case study – 5α reductase deficiency

- 15-year-old daughter of consanguineous parents presented with amenorrhoea, no breast development, sparse pubic/axillary hair
- Exam revealed clitoris-like phallus, pseudovaginal perineoscrotal hypospadia, no uterus/ovaries and inguinal testes

Plasma with female RR's		Male RR
Karyotype	XY	
LH (1.5-11.5)		LH (1.5-9.0)
FSH (3-15)		FSH (1.5-9.0)
Testosterone (0.8-2.8)	25 nmol/L 🔨	Testosterone (7-28)
DHT (0.2-0.4)	0.2 nmol/L	DHT (0.1-0.6)
T: DHT	125	

Case study - 2° hypogonadism

- A 45-year-old man with tiredeness, decreased libido and decreased frequency of shaving
- He was diagnosed with diabetes mellitus 6 mnths earlier

Cortisol (140-550)	90 nmol/L ↓
Testosterone (7-28)	4 nmol/L ↓
LH (1.5-9.0)	3.0 U/L
FSH (1.5-9.0)	0.7 U/L ↓
TSH (0.15 – 3.5)	1.4 mU/L
FT4 (10 – 27)	8 pmol/L ↓
Prolactin (3-17)	15 μg/L
Iron (9-27)	24 μmol/L
Transferrin (2.1-4.3)	1.4 g/L ↓
% Trf saturation (10-55)	67 %
Ferritin (30-300)	11 500 g/L 个

Panhypopituitarism + DM: consider haemochromatosis

LFT's were abnormal and he was homozygous for C282Y

Other tests

GnRH stimulation test

- IV GnRH and measure LH/FSH at 0, 20, 60 min
- LH increases 3-6x; FSH increases 20-50%
- 1° hypogonadism: exaggerated responses
- 2° hypogonadism: reduced responses
- Infrequently used, since adds little value

Clomiphene stimulation test

- Oral Clomiphene for 5-7d; measure LH/FSH on day 0 and 7
- LH increases 2x; FSH increases 20-50%
- 2° hypogonadism: reduced responses
- Helpful to distinguish idiopathic delayed puberty

Other tests (cntd)

hCG stimulation test

- IM hCG on day 0 and 2; measure T on day 0, 2 and 4
- T should rise to above RR
- 1° hypogonadism: reduced responses in Leydig cell hypofunction
- 2° hypogonadism: exaggerated (3x increase) response
- Cryptorchidism: no increase suggests absence of functioning testicular tissue; increase suggests intraabdominal testes
- 5α reductase deficiency (pre-pubertal): T:DHT > 10

 Testicular biopsy for azoospermia with normal T, LH/FSH

Semen analysis

Normal semen analysis:

- >20 million sperm/mL
- >40 million sperm/ejaculate
- ->50% motile; >25% have rapid forward progression; >50% have normal morphology
- Two normal analyses = normal
- Four abnormal analyses over mnths to diagnose abnormality
- <5 million sperm/ejaculate in 1°/ 2°</p> hypogonadism
- 35 million sperm/ejaculate plus aberrant motility \rightarrow sperm function abnormality or 1° hypogonadism

- Proliferation of glandular tissue of male
 breast due to \$\frac{1}{2}\$ and rogen: oestrogen ratio
- Pseudogynaecomastia in obese men
- Causes (see Table 4.)
- Laboratory tests
 - Testosterone, SHBG, LH, FSH, E₂, β hCG, prolactin
 - When indicated: tests of renal, liver, thyroid, adrenal, pituitary fx, karyotype

Table 4. Causes of gynaecomastia

Physiological

Neonatal, puberty, elderly

Decreased androgen synthesis or action

Hypogonadism

Increased oestrogen

Chronic liver disease

End-stage renal failure

Hyperthyroidism

Tumours

Drugs

Oestrogens or binding to E₂-receptor (digoxin, cannabis, griseofulvin)

Anti-androgens (spironolactone, cimetidine)

Erectile dysfunction
 Causes of erectile dysfunction (see Table 5.)

 Laboratory tests for erectile dysfunction

- Electrolytes, creatinine
- Fasting glucose and lipogram
- Testosterone, SHBG, LH

– Prolactin

Table 5. Causes of erectile dysfunction

Neurogenic

Spinal cord injury, diabetic neuropathy

Psychogenic

Stress, performance anxiety, depression

Vasculogenic

DM, HT, atherosclerosis, Peyronie disease, trauma

Drugs

Antihypertensives, antidepressants, anti-androgens, alcohol abuse, cigarette-smoking

Endocrine

Hyperprolactinaemia, thyroid disease, hypogonadism

Systemic disease

DM, CRF, CVD, liver disease