Hypertension in childhood Approach to diagnosis Part 1 Block 10

Prof G van Biljon

Department of Paediatrics

University of Pretoria

Introduction

- Hypertension is the most common risk factor for the development of coronary heart disease, stroke and chronic kidney disease
- CVS is the the second most important cause of death in adults in SA [1]
- It accounts for 7.5% of the health care spending in SA [2]

- Bradshaw D et al. Medical Research Council Policy Brief. March 2003.
 Tygerberg MRC 2003.
- 2. Douberty J et al. Centr Afr J Med 1996;42:21-24

Incidence of Hypertension

- Increasing in both adults and children mainly due to an increase in primary hypertension
- This is in line with increasing incidence of obesity and physical inactivity¹
- In a recent study in school aged children the prevalence of hypertension was 4.5%²

- 1.National High Blood Pressure Education Program Working Group on High BP in children and Adolescents 4th Report Pediatr 2004; 114 556
- 2. Sorof et al. Pediatrics 2004; 113:475-482

Origin and aetiology of adult hypertension

- BP is determined by genetic and environmental influences
- Increasing evidence that chronic diseases in adults like
 CHD, type II diabetes mellitus and HT are determined by
 a range of characteristics originating antenatally and
 which continue throughout infancy and childhood

Mechanisms of disease: In utero programming in the pathogenesis of HT

- In early life humans are "plastic", molded by their environment
- ■During critical periods of development nutritional and other environmental cues can permanently alter the structure, homeostatic systems and functions of the body – a process termed programming
- Critical periods coincide with periods of rapid cell division
 e.g. for the kidney nephrogenesis completed by 34-36 w

Clinical Practice Nephrology 2006; 2 (12) 700-706

Longterm effects of in utero programming

- Adverse nutritional and environmental factors influence renal development
- Low birth weight babies have ↓ number of nephrons
- Link between developmental plasticity and chronic diseases like CHD, HT, stroke, T2DM – LBW
- Adult hypertension linked to ↓ in nephron number

Monitoring childhood BW and BP

- It is rate of ↑ in fatness after the age of 2 years rather than the level of fatness at any given age that determines risk
- Serial measurements of BMI necessary to monitor besity
- Those whose BMI's cross percentiles upwards beyond the age of 2 years should have their BPs monitored routinely

Teenage hypertension = new disease

- Linked to childhood obesity "MacDonald Syndrome"
- Ambulatory systolic BP showed an ↑increase with ↑ BMI (1)
- Increased risk of CVS disease + Metabolic Syndrome (obesity, insulin resistance + dyslipidaemia)
- IUGR linked to risk of HPT in childhood, marker for adult cardiovascular disease (2)

1 Paediatrics 2008;121:115-22

2 Arch Pediatr Adolesc Med 2006; 160:977-81

Origins & Aetiology of Adult Hypertension

The most important of these early life determinants are

- Poor socio-economic environment ¹
- Those whose mothers had pregnancy induced HT
- Those whose mothers smoke throughout pregnancy
- Those with low birth weight
- Who were not breast-fed
- Who have high sodium diets in infancy
- Who are obese in childhood or adolescence
- 1. Galobardes, B et al. Epidemiol Rev 2004; 26:7-21

Interpretation of BP

- BP in children correlates with body size and increases with age
- BP "tracks across the life course, such that those at the higher end of the BP distribution in early life tend to be at the higher end of the distribution
- Age and sex-specific height percentiles should be used to interpret the measured BP^{1,2}
- 1. Easy-to- use childhood BP tables (International Pediatric Hypertension Association <u>Http://www.pediatrichypertension.org</u>
- 2. Http://nhlbi.nih.gov/health/prof/heart/hbp/hbp_measure_child.htm>(2007)

Tracking

- Tracking of a characteristic is defined as either stability of a certain variable over time or the predictability of later values from earlier measurements ^{1,2}
- BP tracks from childhood to adulthood ^{3,4}

- 1.Tracking: prediction of future values from serial measurements. Biometrics 1981; 37: 427-437
- 2. An index of tracking for longitudinal data. Biometrics 1981; 37: 439-446
- 3. Blood presssure tracking. J Cardiovasc Risk 1997; 4: 251-256
- 4. Tracking of systolic BP during childhood: a 15 year follow up population-based family study in eastern Finland. J Hypertens 2002; 20: 195-202

Definition of Hypertension

 Normal : SBP and DBP < 90th percentile BP for sex, age and height percentile

 Hypertension : SBP and/or DBP ≥ 95th percentile for BP for age, sex and height percentile on 3 separate occasions

Definition of Hypertension

 National High BP Education Program Working Group defined 3 categories of high BP in children:¹

■ → specific management implications

National High BP Education Program Working Group on High BP in Children and Adolescents – 4th Report Paediatrics 2004;114(2):555-576

- Prehypertension = systolic or diastolic BP >90th to <95th percentile* or if BP exceeds 120/80 mm Hg even if <90th to <95th percentile
- Stage 1 HT = systolic or diastolic BP between 95th
 99th percentile *plus 5 mm Hg
- Stage 2 HT = systolic or diastolic BP >99th percentile * plus 5 mm Hg
- *Value for age, gender and height percentile measured on at least 3 separate occasions

Measurement Mistakes Due to Wrong Cuff Size

- Length:The cuff must encircle the arm completely
- □ Width: should be 40-50% of the arm circumference
- Use the widest cuff that can be applied to the upper arm

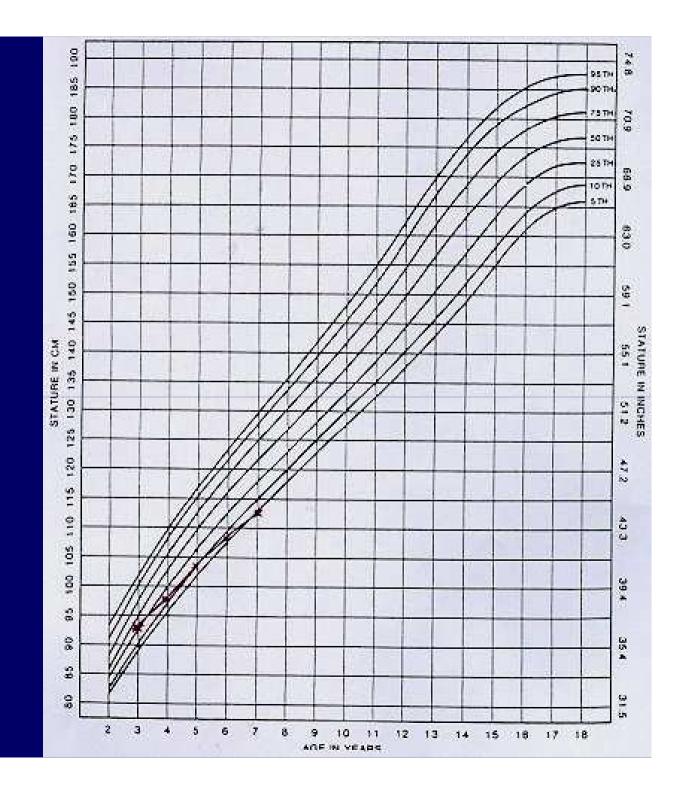
Measurement Mistakes Due to Wrong Cuff Size

- Rather use too large cuff than one that is too small
- Large cuffs can be folded to the appropriate size in smaller infants as long as the bladder encircles the arm

Purpose of BP Measurement

To identify pathology

- ? Disease causing secondary HT
- ? Essential HT


Important

- Not to create anxiety by incorrect technique
- Fail to recognize normality
- Miss a treatable condition

Need to know patient's:

- AgeSex
- Height

Plot height on percentile chart

95th Percentiles of Blood Pressure for Boys for Age & Height Percentiles

Age	Sy	stolic Bl	ood Pres	ssure by mmHg		le of Hei	Diastolic Blood Pressure by Percentile of Height, mmHg+								
	5%	10%	25%	50%	75%	90%	95%	5%	10%	25%	50%	75%	90%	95%	
1	98	99	101	103	104	107	106	54	54	55	56	57	58	58	
2	101	102	104	106	108	108	110	59	59	60	61	62	63	63	
3	104	105	107	109	110	109	113	63	63	64	65	66	67	67	
4	106	107	109	111	112	111	115	66	67	68	69	70	71	71	
5	108	109	110	112	114	112	116	69	70	71	72	73	74	74	
6	109	110	112	114	115	114	117	72	72	73	74	75	76	76	
7	110	111	113	115	117	115	119	74	74	71	76	77	78	78	
8	111	112	114	116	118	117	120	75	76	72	78	79	79	80	
9	113	114	116	118	119	119	121	76	77	74	79	80	81	81	

Age	BP Perce ntile*	Systolic Blood Pressure by Percentile of Height mmHg								Diastolic Blood Pressure by Percentile of Height, mmHg							
		5%	10%	25%	50%	75%	90%	95%	5%	10%	25%	50%	75%	90%	95%		
1	95 th	98	99	101	103	104	107	106	54	54	55	56	57	58	58		
1	99 th	105	106	108	110	112	113	114	61	62	63	64	65	66	66		
2	95 th	101	102	104	106	108	108	110	59	59	60	61	62	63	63		
2	99 th	109	110	111	113	115	117	117	66	67	68	69	70	71	71		
3	95 th	104	105	107	109	110	109	113	63	63	64	65	66	67	67		
3	99 th	111	112	114	116	118	119	129	71	71	72	73	74	75	75		
4	95 th	106	107	109	111	112	111	115	66	67	68	69	70	71	71		
4	99 th	113	114	116	118	129	121	122	74	75	76	77	78	78	79		

Clinical manifestations of HT in neonates + infants

- Failure to thrive
- Irritable
- Feeding problems, vomiting
- Seizures
- Respiratory failure, cyanosis or apnoea
- Cardiac failure

HT in neonates and infants

- Low incidence in healthy term infants 0.2 to 3%
- Thus routine BP measurement is not advocated
- Not so for preterm and high-risk newborns in NICU:
- HT more common in infants (9%) with
 - BPD (Chronic lung disease)
 - PDA
 - Intraventricular haemorrhage
 - Indwelling umbilical arterial catheters
 - Antenatal steroids
 - Maternal HT
 - Postnatal acute renal failure

Pediatr Nephrol (2012) 27:17-32

Presenting features of HT in toddlers/older Children

- CNS: Convulsions (25%), coma, facial palsy (12%), hemiplegia
 (8%)
- Visual symptoms (27%): blurring, blindness
- Renal: Oedema, haematuria, proteinuria, polydipsia, polyuria, enuresis, acute renal failure
- CVS: Acute heart failure and pulmonary oedema, LV hypertrophy
- Respiratory: Acute respiratory distress
- Other: poor growth, vomiting, abdominal pain, epistaxis
- Some may be asymptomatic

Presenting features of HT in this toddler

- Abdominal distension
- Polydipsia
- Polyuria
- FTT
- Left renal hypoplasia

Core Messages

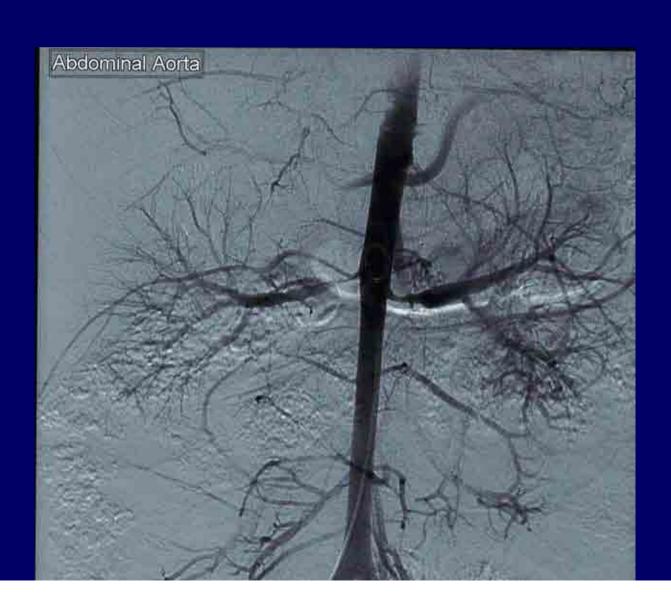
- Likelihood of identifying a secondary cause is
 - Directly related to level of BP and
 - Inversely related to age of the child
- In the majority of children HT is due to an identifiable cause
- Severe elevation of BP, regardless of age, warrants urgent evaluation and referral

Core Messages

Severe hypertension suggests renal disease

Acute onset of HT suggests acute renal disease

Work-up for Hypertension


- Start with complete history
- Physical examination ? Evidence of an underlying cause or end organ damage
 - Antropometry
 - Body habitus (pattern of obesity)
 - Skin: café au-lait spots, striae
 - Pulses in all extremities
 - Measure BP in all 4 limbs (at least right arm and right leg)
 - Cardiac and neurological examination
 - Fundi (arteriolar narrowing)
 - Abdominal mass, palpable bladder, flank bruits, oedema
 - Examine thyroid

Hypertension

Multiple Café-au-lait spots

Bilateral renal artery stenosis associated with Neurofibromatosis

- Malar skin rash
- Petechiae and purpura
- CNS symptoms
- SLE

latrogenic HT

- latrogenic
- Steroid treatment

Work-up for hypertension in neonates

- Obtain focused history
 - ? Pertinent prenatal exposures
 - Clinical course
 - Any concurrent conditions
 - Procedures e.g., umbilical catheter
 - Current medication
- Physical examination- focused to assist in narrowing the differential diagnosis
- BP readings should be obtained in all four extremities to rule out coarctation of the aorta

Diagnostic Evaluation

- Investigations should be tailored to
 - The age of the child
 - The severity of BP elevation
 - Positive findings on history and examination
- Appropriate investigations should be done to
 - Exclude an underlying cause
 - Exclude acute complications and associated diseases
 - Determine effects on target organs

Special Investigations

A limited number of investigations will often confirm suspected pathology or help to direct further tests:

- Urine dipstix, microscopy and culture
- Blood Urea, Creatinine, Electrolytes
- Full blood count
- Renal ultra sound
- CXR and ECG
- Peripheral Plasma Renin Activity

HT Crisis = Malignant HT

- Hallmark
 - Fibrinoid necrosis
 - Ischaemia of end organs
- Manifestations
 - Encephalopathy
 - Retinal haemorrhages
 - Cardiac failure
 - Renal complications

Hypertensive Urgency

- Definition
 - Severe HT without accompanying end organ damage
- Manifestations
 - Headache, blurred vision and nausea, but no evidence of end organ involvement
- The BP level at which these changes occur is not predictable
- Depends on the rate of rise in BP