Hypertension in childhood Approach to diagnosis and management

Prof G van Biljon Department of Paediatrics University of Pretoria

Origin and aetiology of adult hypertension

- Research has shown that chronic diseases in adults like CHD, type II diabetes mellitus and HT are determined by a range of characteristics which originate antenatally and continue throughout infancy and childhood
- In early life humans are "plastic", molded by their environment
- Adverse intrauterine conditions can permanently alter the structure, homeostatic systems and functions of the body – a process termed programming

- Link between developmental plasticity and chronic diseases like CHD, HT, stroke, Type II Diabetes and LBW
- Adverse intra-uterine conditions result in Low Birth
 Weight (LBW) babies who have \$\frac{1}{2}\$ in nephron number
- Adult hypertension linked to \downarrow in nephron number

Teenage hypertension = new disease

- Linked to childhood obesity "MacDonald Syndrome"
- Ambulatory systolic BP showed a correlation between teenage HT and increasing BMI ⁽¹⁾
- Increased risk of CVS disease + Metabolic Syndrome (obesity, insulin resistance + dyslipidaemia)
- IUGR linked to risk of HPT in childhood, marker for adult cardiovascular disease ⁽²⁾

1 Paediatrics 2008;121:115-22 2 Arch Pediatr Adolesc Med 2006; 160:977-81

Origins & Aetiology of Adult Hypertension

The most important of these early life determinants are

- Poor socio-economic environment¹
- Those whose mothers had pregnancy induced HT
- Those whose mothers smoke throughout pregnancy
- Those with low birth weight
- Who were not breast-fed
- Who have high sodium diets in infancy
- Who are obese in childhood or adolescence
- 1. Galobardes, B et al. Epidemiol Rev 2004; 26:7-21

Monitoring childhood BW and BP

- It is rate of 1 in fatness after the age of 2 years rather than the level of fatness at any given age that needs monitoring
- Serial measurements of BMI becomes necessary
- Children whose BMI's cross percentiles upwards beyond the age of 2 years should have their BP routinely monitored

Interpretation of BP

- BP in children correlates with body size and increases with age
- BP "tracks across the life course, such that those at the higher end of the BP distribution in early life tend to be at the higher end of the distribution
- Age and sex-specific height percentiles should be used to interpret the measured BP^{1,2}
- ^{1.} Easy-to- use childhood BP tables (International Pediatric Hypertension Association <u>Http://www.pediatrichypertension.org</u>
- 2. Http://nhlbi.nih.gov/health/prof/heart/hbp/hbp_measure_child.htm>(2007)

Definition of Hypertension

- Normal : SBP and DBP < 90th percentile BP for sex, age and height percentile
- Hypertension : SBP and/or DBP ≥ 95th percentile for BP for age, sex and height percentile on 3 separate occasions

Definition of Hypertension

- National High BP Education Program Working Group defined 3 categories of high BP in children :¹
- \rightarrow specific management implications
- Pre hypertension
- Stage 1 HT
- Stage 2 HT

1. National High BP Education Program Working Group on High BP in Children and Adolescents – 4th Report Paediatrics 2004;114(2):555-576

- Prehypertension = systolic or diastolic BP >90th to <95th percentile* or if BP exceeds 120/80 mm Hg even if <90th to <95th percentile
- Stage 1 HT = systolic or diastolic BP between 95th
 99th percentile *plus 5 mm Hg
- Stage 2 HT = systolic or diastolic BP >99th percentile * plus 5 mm Hg
- *Value for age, gender and height percentile measured on at least 3 separate occasions

Technical aspects of measuring BP

- Use correct cuff size:
 - Cuff must encircle the arm
 - Width should be 40-50% of the arm circumference
 - Rather use too wide cuff
- Situation
 - Environment
 - Anxious, crying infant
 - White coat hypertension
 - Activity

Purpose of BP Measurement

- To identify pathology and differentiate between
 - Underlying disease secondary HT
 - Essential HT
- Important
 - Incorrect diagnosis of HT e.g. poor technique \rightarrow anxiety
 - Miss a treatable condition

Need to know patient's:

- AgeSex
- Height

Plot height on percentile chart

95th Percentiles of Blood Pressure for Boys for Age & Height Percentiles

Age	Systolic Blood Pressure by Percentile of Height, mmHg+							Diastolic Blood Pressure by Percentile of Height, mmHg+						
	5%	10%	25%	50%	75%	90%	95%	5%	10%	25%	50%	75%	90%	95%
1	98	99	101	103	104	107	106	54	54	55	56	57	58	58
2	101	102	104	106	108	108	110	59	59	60	61	62	63	63
3	104	105	107	109	110	109	113	63	63	64	65	66	67	67
4	106	107	109	111	112	111	115	66	67	68	69	70	71	71
5	108	109	110	112	114	112	116	69	70	71	72	73	74	74
6	109	110	112	114	115	114	117	72	72	73	74	75	76	76
7	110	111	113	115	117	115	119	74	74	71	76	77	78	78
8	111	112	114	116	118	117	120	75	76	72	78	79	79	80
9	113	114	116	118	119	119	121	76	77	74	79	80	81	81

Age	BP Perce ntile*	Systolic Blood Pressure by Percentile of Height, mmHg+						Diastolic Blood Pressure by Percentile of Height, mmHg+							
		5%	10%	25%	50%	75%	90%	95%	5%	10%	25%	50%	75%	90%	95%
1	95 th	98	99	101	103	104	107	106	54	54	55	56	57	58	58
1	99 th	105	106	108	110	112	113	114	61	62	63	64	65	66	66
2	95 th	101	102	104	106	108	108	110	59	59	60	61	62	63	63
2	99 th	109	110	111	113	115	117	117	66	67	68	69	70	71	71
3	95 th	104	105	107	109	110	109	113	63	63	64	65	66	67	67
3	99 th	111	112	114	116	118	119	129	71	71	72	73	74	75	75
4	95 th	106	107	109	111	112	111	115	66	67	68	69	70	71	71
4	99 th	113	114	116	118	129	121	122	74	75	76	77	78	78	79

Clinical manifestations of HT in neonates + infants

- Failure to thrive
- Irritable
- Feeding problems, vomiting
- Seizures
- Respiratory failure, cyanosis or apnoea
- Cardiac failure

HT in neonates and infants

- Low incidence in healthy term infants 0.2 to 3%
- So unusual routine BP determination is not advocated
- Not so for preterm and high-risk newborns in NICU:
- HT more common in infants (9%) with
 - BPD (Chronic lung disease)
 - PDA
 - Intraventricular haemorrhage
 - Indwelling umbilical arterial catheters
 - Antenatal steroids
 - Maternal HT
 - Postnatal acute renal failure

Pediatr Nephrol (2012) 27:17-32

Presenting features of HT in toddlers/older Children

- CNS: Convulsions (25%), coma, facial palsy (12%), hemiplegia (8%)
- Visual symptoms (27%): blurring, blindness
- Renal: Oedema, haematuria, proteinuria, polydipsia, polyuria, enuresis, acute renal failure
- CVS: Acute heart failure and pulmonary oedema, LV hypertrophy
- Respiratory: Acute respiratory distress
- Other: poor growth, vomiting, abdominal pain, epistaxis
- Some may be asymptomatic

Presenting features of HT in this toddler

- Abdominal distension
- Polydipsia
- Polyuria
- FTT
- Left renal hypoplasia

Core Messages

Likelihood of identifying a secondary cause is
Directly related to level of BP and
Inversely related to age of the child
In the majority of children HT is due to an identifiable cause

Severe elevation of BP, regardless of age, warrants urgent evaluation and referral

Severe hypertension suggests renal disease

Acute onset of HT suggests acute renal disease e.g. Acute post streptococcal glomerulonephritis

Work-up for Hypertension

- Start with complete history
- Physical examination ? Evidence of an underlying cause or end organ damage
 - Antropometry
 - Body habitus (pattern of obesity)
 - Skin: café au-lait spots, striae
 - Pulses in all extremities
 - Measure BP in all 4 limbs (at least right arm and right leg)
 - Cardiac and neurological examination
 - Fundi (arteriolar narrowing)
 - Abdominal mass, palpable bladder, flank bruits, oedema
 - Examine thyroid

Hypertension

Multiple Café-au-lait spots

Bilateral renal artery stenosis associated with Neurofibromatosis

Malar skin rash

- Petechiae and purpura
- CNS symptoms

SLE

latrogenic HT

- latrogenic
- Steroid treatment

Work-up for hypertension in neonates

- Obtain focused history
 - ? Pertinent prenatal exposures
 - Clinical course
 - Any concurrent conditions
 - Procedures e.g., umbilical catheter
 - Current medication
- Physical examination- focused to assist in narrowing the differential diagnosis
- BP readings should be obtained in all four extremities to rule out coarctation of the aorta

Diagnostic Evaluation

- Investigations should be tailored to
 - The age of the child
 - The severity of BP elevation
 - Positive findings on history and examination
- Appropriate investigations should be done to
 - Exclude an underlying cause
 - Exclude acute complications and associated diseases
 - Determine effects on target organs

Special Investigations

A limited number of investigations will often confirm suspected pathology or help to direct further tests:

- Urine dipstix, microscopy and culture
- Blood Urea, Creatinine, Electrolytes
- Full blood count
- Renal ultra sound
- CXR and ECG
- Peripheral Plasma Renin Activity

HT Crisis = Malignant HT

- Hallmark
 - Fibrinoid necrosis
 - Ischaemia of end organs
- Manifestations
 - Encephalopathy
 - Retinal haemorrhages
 - Cardiac failure
 - Renal complications

Hypertensive Urgency

Definition

- Severe HT without accompanying end organ damage
- Manifestations
 - Headache, blurred vision and nausea, but no evidence of end organ involvement
- The BP level at which these changes occur is not predictable
- Depends on the rate of rise in BP

Management of severe HT

- Life threatening condition
- Serious sequelae if inadequately treated
- Equally serious complications if over enthusiastically treated
- Rate of BP reduction depends upon starting BP and age of the child

Management

Hypertensive crises

Hypertensive urgency

Treat urgently:

Reduce BP within minutes to hours in order to avoid lifethreatening complications Avoid precipitous drop in BP

Control BP over 72 hours to one week

Management of acute malignant hypertension

□ Aim to reduce blood pressure by:

1/3 of total desired reduction in 1st 12 hrs
Next 1/3 over 12-36 hrs
Last 1/3 over 36-72 hrs

Aim to treat the cause –e.g. if fluid overloaded give a diuretic.

Pathophysiology of chronic hypertension

- In chronic HT the cerebral autoregulatory zone is shifted to a higher BP range compared to normotensive patients
- If the BP is lowered too rapidly below this range, perfusion of the target organs may become compromised
- \rightarrow cerebral ischaemia, stroke, blindness

Impaired Cerebral Autoregulation during Ischemia

Drug Treatment

- Order in which drugs are administered may vary depending on the
 - History
 - Physical examination
 - Laboratory findings
- Oral drugs can occasionally be used
- Use parenteral drugs for altered mental status

Tailor anti HT drugs according to cause

Drugs for treatment of HT crises

 Furosemide IV and
 Labetolol (Trandate) IV

3. Amlodipine oralMay be repeated 6 hours later, then 12 hourly

If repeated doses are required, start and continue oral therapy as soon as possible

Treatment of chronic hypertension

 For uncomplicated primary HT+ no target-organ damage, BP goal be < 95th percentile

 For chronic renal disease, DM or HT target organ damage, BP goal <90th percentile

 Specific classes of antihypertensive drugs should be used according to the underlying pathogenesis or illness

Classification of chronic hypertension in children and therapy recommendations

	BP percentile	Therapeutic lifestyle changes	Pharmacologic treatment
Prehypertension	90^{th} to < 95^{th} or BP > 120/80 mm Hg even if < 90^{th} percentile	Introduce physical activity Diet management Weight reduction if overweight	None unless compelling indications e.g. chronic kidney disease
Stage I hypertension	95-99 th percentile plus 5 mm Hg	Introduce physical activity Diet management Weight reduction if overweight	Initiate therapy based on indications, e.g. positive family history of cardiovascular disease, essential hypertension, DM etc.
Stage 2 hypertension	> 99 th percentile plus 5 mm Hg	Regular physical exercise. Diet management Weight reduction if overweight	Initiate therapy

Treatment of Chronic Hypertension

- Advise a change in lifestyle
 - Limit TV viewing and increase physical activity
 - Limit junk food
- A weight reduction programme for obese individuals
- Regular aerobic exercise for essential hypertension
- Dietary advice
 - Limit salt and saturated fat intake
 - Increase dietary fibre intake

Step wise treatment

- For ambulatory patients begin with lowest dose of preferred drug
- A dose at each visit until control is achieved
- For patients with persistent HT despite an optimal dose of a 1st line drug, add 2nd or 3rd drug
- There is no specific order in which drugs should be added, however, for some conditions certain drugs are indicated

Treatment of chronic hypertension

- For uncomplicated 1°HT+ no target-organ damage, BP goal be <95th percentile
- For chronic renal disease, DM or HT target organ damage, BP goal<90th percentile
- Specific classes of antihypertensive drugs should be used according to the underlying pathogenesis or illness

Treatment of Chronic Hypertension

Chronic kidney disease & proteinuria

Drugs to:

Decrease proteinuria

ACEI, ARB, β -Blocker

Treatment of Chronic Hypertension

Apparent \uparrow mineralocorticoid or Liddle Syndrome (\downarrow renin)

Combined α & βadrenergic receptor blocker Labetolol

Prazosin and Atenolol

Drugs that act on collecting tubules Triamterene

Amiloride

Drugs: Unsafe in Specific Situations

Pheochromocytoma	Dangerous to start with β blocker only \rightarrow unopposed α -stimulation
CNS disease or coma	CCB increase risk of CNS hemorrhage
Acute renal failure or Bilateral renal art. stenosis	ACEI

Drugs: Unsafe in Specific Situations

Reminder

- Measurement of BP is part of routine examination
- Incorrect measurement is worthless
- No point in measuring it, but not interpreting value
- Medical negligence if no action is taken when child has hypertension

References

- 1. Paediatrics 2008;121:115-22
- 2. Arch Pediatr Adolesc Med 2006; 160:977-81

3. Wen X, Triche EW, Hogan JW, Shenassa ED and Buka SL. Prenatal Factors for Childhood Blood Pressure Mediated by Intrauterine and/or Childhood Growth. Pediatr 2011;127(3): 713-721

- 4. Galobardes, B et al. Epidemiol Rev 2004; 26:7-21
- 5. National High BP Education Program Working Group on High BP in Children and Adolescents – 4th Report Paediatrics 2004;114(2):555-576

6. Easy-to- use childhood BP tables (International Pediatric Hypertension)

Association) <u>Http://www.pediatrichypertension.org</u>

7.Http://nhlbi.nih.gov/health/prof/heart/hbp/hbp_measure_child.htm>(2007)
8. Chandar J & Zilleruelo G. Hypertensive crisis in children. Pediatr
Nephrol 2012;27:741-751