ORTHOPAEDIC TUMOURS

DJM FRANTZEN

PRINCIPLES

STAGING
WORKUP
RADIOLOGY
BIOPSY
PROCEDURES
CHEMOTHERAPY
RADIOTHERAPY

STAGING

(ENNEKING)

ENNEKING'S SURGICAL STAGES			
STAGE	GRADE	SITE	METASTASES
1A	Low(G1)	Intracompartmental(T1)	None(M0)
1B	Low(G1)	Extracompartmental(T2)	None(M0)
2A	High(G2)	Intracompartmental(T1)	None(M0)
2B	High(G2)	Extracompartmental(T2)	None(M0)
3	Low(G1) or High(G2)	Intracompartmental(T1) or Extracompartmental(T2)	Yes(M1)

GRADING

• G0= Histologically benign (well differentiated and low cell to matrix ratio)

• G1= Low grade malignant (few mitoses, moderate differentiation and local spread only)

• G3= High grade malignant (frequent mitoses, poorly differentiated, high risk for metastases)

Features of aggressive tumours

- Cellular atypia
- Frequent mitoses
- Extensive necroses
- Significant vascularity
- Small amounts of immature matrix

EXAMPLES

LOW (G1)	HIGH (G2)	
Parosteal osteosarcoma	Classic osteosarcoma	
Secondary	Primary	
osteosarcoma	osteosarcoma	
Myxoid	Pleomorphic	
liposarcoma	liposarcoma	

ROUND CELL LESIONS EWINGS SARCOMA RETICULUM CELL SARCOMA CORTICAL FIBROUS DYSPLASIA * ADAMANTINOMA MYELOMA FIBROUS DYSPLASIA OSTEOID OSTEOMA -FIBROSARCOMA FIBROXANTHOMA CHONDROMYXOID FIBROMA (FIBROUS CORTICAL DEFECT, NON-OSSIFYING FIBROMA) OSTEOSARCOMA SIMPLE BONE CYST OSTEOBLASTOMA OSTEOCHONDROMA **ENCHONDROMA** CHONDROSARCOMA) GIANT CELL TUMOUR **CHILD-METAPHYSEAL -ADULT-'END OF BONE CHONDROBLASTOMA.. ARTICULAR OSTEOCHONDROMA

SITE

• T1 = INTRA-COMPARTMENTAL

• T2 = EXTRA-COMPARTMENTAL

Intracompartmental

intraosseous

intra-articular

Intrafascial compartments:

- ray of hand or foot
- posterior or anterior leg
- ant, med, post thigh
- buttocks
- volar or dorsal forearm
- anterior or posterior arm
- pericapsular

Extracompartmental

soft tissue extension

deep fascial extension

Extrafascial planes/spaces: (neurovascular containing spaces)

- mid & hind foot / mid hand
- popliteal fossa
- groin-femoral triangle
- intra-pelvic
- antecubital fossa
- axilla
- paraspinal

METASTASES

(Nodal or bloodborn spread)

 MO = No evidence of regional or distant metastases

 M1 = Regional or distant metastases present

TUMOUR WORKUP

- Clinical examination
- Bloods
- Urinalysis
- CXR
- Abdominal sonar

- Bonescan
- MRI
- CT (lesion/chest)
- Angiography
- Biopsy

CLINICAL EXAMINATION

(age, sex, site, past history)

- Breasts
- Thyroid
- Chest
- Liver
- Kidney
- Rectal

AGE

VS

Probability of OS in 12-25 yrs

• Mets in > 50 yrs

Chondroblastoma vs GCT

10-20 yrs vs 17-30 yrs

ROUND CELL TUMOURS

< 6 YRS : Metastatic neuroblastoma

- 6-15 yrs : Single lesion = Ewing's
 Multiples = Lymphoma / Leukaemia
- 15-35 yrs : Lymphoma / Leukaemia
- > 35 yrs : Myeloma / Lymphoma / Metastatic melanoma

HISTORY

- Presenting complaint
- Pain and / or swelling
- Character / duration of symptoms (distinguish benign / malignant clinically)
- Past and family history
- Loss of weight
- Other

PHYSICAL EXAMINATION

- General health
- Anemia, wasting, spleen?
- Skin lesions
- Precocious puberty
- Hypogonadism
- Optical abnormalities
- Exophthalmos (EG, FD)

LOCAL EXAMINATION

- Location (epi, meta, diaphysis)
- Tumor size
- Consistency (bone or soft tissue)
- Fixed or mobile
- Solitary or multiple
- N/V status
- Lymph nodes ?

LABORATORY

Blood / urine samples seldom helpful

- Multiple myeloma
- Metastatic disease
- Pagets
- Infection

LABORATORY examinations

- FBC
- ESR
- Biochemistry
- Acid-phosphatase
- PSA
- Thyroid function test
- Serum protein electrophoresis

ALKALINE PHOSPHATASE

- ELEVATED IN ANY ENTITY WITH OSTEOBLASTIC ACTIVITY
- BONEFORMING OS
- BLASTIC METS
- PAGETS
- ETC

NEUTROPHILIA

Osteomyelitis, sometimes Ewing's sarcoma

ESR

• ELEVATED IN:

INFECTION
EOSINOPHILIC GRANULOMA
MYELOMA

ANEMIA

- LYMPHOMA / LEUKEMIA
- CHRONIC DISEASE
- EWINGS
- ETC

PROTEIN ELECTROPHORESIS

MYELOMA

RADIOLOGICAL EXAMINATIONS

- Tc 99
- CT-scans
- Angiography
- MRI

RADIOGRAPHIC INTERPRETATION

X-RAYS IN 2 PLANES

CT : BONE
 FORMATION ,
 CALCIFIED LESIONS
 INTEGRETY
 CORTEX
 LUNG METS

Tc-BONESCAN:

Detects skeletal mets

May be false negative in multiple myeloma

MRI

- STUDY of choice to determine anatomical setting of both bone and soft tissue tumors
- Tumour relationship to vital structures like blood vessels and nerves
- Evaluation of lesion on Tc scan, not yet visible on X-rays

ULTRASOUND

FOR SYSTIC LESIONS /

SOFT TISSUE MASS

ARTERIOGRAPHY

- SELDOM USED
- EMBOLIZATION OF APPROPRIATE LESIONS

RADIOGRAPHIC FEATURES

TUMORS AND TUMOR-LIKE LESIONS OF BONE

SITE

• Epiphysis: GCT, Chondroblastoma

 Metaphysis: Osteosarcoma, osteoblastoma, Chondromyxoid fibroma, NOF osteochondroma

Diaphysis : Metastatic carcinoma ,Ewing's ,
 Chondrosarcoma

RADIOGRAPHIC FEATURES

- BORDERS
- SLOW GROWING
 - .. BENIGN
- AGGRESSIVE ...
 MALIGNANT

TYPE OF BONY DESTRUCTION

RADIOGRAPHIC FEATURES

CARTILAGE VS BONE

PERIOSTEAL REACTION

PERIOSTEAL REACTIONS

- Codman : Triangular cuff of reactive periosteal bone at the edge of a lesion. (OS, osteomyelitis, ABC, infection)
- Onion-skinning: Due to episodic or pulsatile tumour growth (Ewing's, Infection, OS of shaft)
- Sunburst: Rapid continuous periosteal lifting and stretching (bone next to Sharpy fibres)

SOFT TISSUE INVOLVEMENT

PRIMARY
SOFT TISSUE
TUMOUR
VS
PRIMARY
BONE
TUMOUR

RADIOGRAPHIC FEATURES

BENIGN VS MALIGNANT

BIOPSY OF BONE TUMOURS

- ? Diagnosis , ? Stage
- Same surgeon as final procedure
- Biopsy tract location important
- Meticulous haemostasis
- Samples for micro & histo

OPEN BIOPSY

EXCISIONAL: When possible in benign lesions

 INCISIONAL : Preferab in malignant lesion

PRINCIPLES

- Longitudinal incision
- Sharp dissection
- Limited anatomic exposure
- Avoid neurovascular exposure
- Sample reactive tissue, pseudo capsule, capsule, tumour
- Small bone window if necessary

PRINCIPLES (CONT)

- Haemostasis
- Subcutaneous stitch
- Drain in line with incision
- If procedure follows biopsy

→ new instruments and drapes

NEEDLE BIOPSY

- As for open biopsy
- Biopsy tract where can be excised
- Fine needle biopsy
- Core needle biopsy
- Disadvantage = tissue biopsy possibility being non-representative (eg. Necrosis or reactive)

FROZEN SECTION

- Determine if specimen adequate or reactive
- Lesion inflammatory/ needs mcs?
- Need for further investigations?
- Immediate diagnosis possible

SURGICAL PROCEDURES

GOAL

REMOVE LESION WITH MINIMAL RISK OF LOCAL RECURRENCE

LIMB SALVAGE

CRITERIA :

1. Local control = amputation

2. Saved limb must be functional

LIMB SALVAGE

• VARIOUS METHODS:

- 1. Endoprosthesis
- 2. Allograft
- 3. Composite
- 4. Arthrodesis

LIMB SALVAGE

- <u>Contra –</u> <u>indications:</u>
- Pathological fractures
- 2. Skeletal immaturity
- 3. Anatomical site

SURGICAL MARGINS

- 1. INTRA-LESIONAL
- 2. MARGINAL
- 3. WIDE
- 4. RADICAL
- 5. AMPUTATION

INTRA-LESIONAL

- Dissection passes through the tumour
- Leaves macroscopic tumour
- Not therapeutic

MARGINAL

- Through pseudo-capsule of tumour / reactive zone
- Controls non-invasive benign tumours
- Recurrence in malignant lesions = 25-50%

WIDE

- Dissection entirely through normal tissue at a distance from the lesion
- Skip lesions / microscopic satellites may be left
- Recurrence of malignant lesions= < 10%

RADICAL

 Removal of entire compartment

Distant metastases
 left

AMPUTATION

- Intra-capsular
- Marginal
- Wide
- Radical

ADJUVANT CHEMOTHERAPY

- Reduces mass and vascularity of tumour
- Time for operative planning
- Want 90% kill rate
- Localized disease = 60-70% long-term disease free survival

COMPLICATIONS

- Stunting of growth
- Osteoporosis
- AVN
- Cisplatinum → nephro & oto toxicity
- Adriamycin → Cardiotoxic
- Chemotherapeutic induced malignancy usually blood forming, eg Leukaemias

RADIOTHERAPY

- Absorption by complex molecules
 \(\rightarrow\) rupture
 of chemical bonds
- Indirect → DNA changes → stop cell reproduction & specific cell Fx
- Destruction of small blood vessels
- Radiosensitivity = mitotic activity
 x= degree differentiation

ADVERSE EFFECTS

- Joint stiffness / function loss
- Subcutaneous fibrosis
- Premature growthplate closure
- Irradiation induced sarcoma
- Enteritis, diarrhoea, obstruction and bleeding
- Cystitis and hepatitis

ADVERSE EFFECTS

- Muscle atrophy and fibrosis
- Erythema and hyperpigmentation
- Hair loss and skin flaking
- Lymphoedema

DEFINITIONS

 Rad (radiation absorbed dose) = Energy imparted to matter by ionising radiation per unit mass

 Grays (Gr) = 1 Joule of energy absorbed by a mass of 1 kg