Osteoporosis

Dr Elsa van Duuren 2012

Bone:

- Bone is a metabolically active organ
- Continuous change

- Physiologic function
- Structural function

Bouxsein, 2001

Main Determinants of Bone Strength

Cancellous and Cortical Bone

Cancellous

- Trabecular Number
- Trabecular Thickness
- Trabecular Separation
- Trabecular Connectivity

lliac cres biopsy

Cortical

- Thickness
- Porosity

Osteoporosis Results in Changes in Cancellous Bone Mass and Architecture Normal

Horizontal Disconnections

Courtesy of D. Dempster

Cortical Porosity and Age

Bone Structure: Intimate Relationship Between Mineral and Collagen

Landis et al, 1996

Mineral and Collagen Deficiencies

Courtesy of Dr. Papapoulos

BONE REMODELING IN ADULTHOOD

From Riggs BL et al. J Bone Miner Res. 2005;20:177-184

Trabecular Perforation: May Decrease Cancellous Bone Strength Trabecular perforations

Dempster and Lindsay ,1993

How Increased Remodeling Can Predispose to Bone Fragility

Parfitt AM, 1991

Definition: Osteoporosis

A systemic skeletal disease characterised by:

- Low bone mass
- Micro architectural deterioration of bone tissue
- Increased bone fragility
- Susceptibility to fracture

Normal bone

Osteoporotic bone

Clinical picture of osteopososis

- Asymptomatic
- Low trauma fractures
- Stress fracture
- Wrist fracture
- Vertebral fracture
- Hip fracture

Osteoporosis: Common Fracture Sit<u>es</u>

Courtesy of J A Kanis

Osteoporosis – Clinical view

Estimated lifetime fracture risk (at 50 years-old)

	Women	Men
Hip	17.5 (16.8-18.2)	6.0 (5.6-6.5)
Vertebra	15.6 (14.8-16.3)	5.0 (4.6-5.4)
Forearm	16.0 (15.7-16.7)	2.5 (2.2-3.1)
Any of the above	39.7 (38.7-40.6)	13.1 (12.4-13.7)

(breast cancer: 9% cardiovascular disease: 40%)

Melton 1991

Lifetime Fracture Risk: a 50 Year Old White Woman

Consequences of Osteoporosis

Increased morbidity

- acute pain and temporary disability
- deformity, permanent disability, lower quality of life

Increased mortality

Following hip and vertebral fracture

*Cooper 1997. Am J Med 103(2A):12S-19S

Mortality Following Hip and Vertebral Fractures

Years after fracture

Source: Cooper 1997. Am J Med 103(2A):12S-19S

Hip Fracture Outcomes

- 24% mortality rate within first year*
- 30% mortality rate in men after first year
- 50% of patients are unable to walk without assistance[†]
- ~ 33% are totally dependent[‡]
- Up to 95% of women with recent hip or wrist fracture were not being treated with anti-osteoporotic regimens[§]

Ray NF et al. *J Bone Miner Res.* 1997;12:24-1235. †Riggs BL, Melton LJ III. *Bone.* 1995;17(5 suppl):505S-511S. ‡Kannus P et al. *Bone.* 1996;18(1 suppl):57S-63S. \$Torgerson D, Dolan P. *Ann Rheum Dis.* 1998;57:378-379.

Vertebral Fractures: Can Result in Physiological Changes

Prevalent Fractures and Future Fracture Risk

Public Health Issues - Osteoporosis in US

- In 1995, osteoporosis caused:
 - 3 million fractures
 - 100,000 deaths
 - 432,000 hospitalizations
 - 2.5 million outpatient visits
 - 180,000 nursing home admissions
 - \$13.8 billion in direct healthcare expenditures
 - approximately 40% of cost due to non-hip fractures

Why do we get osteoporosis:

Lifetime changes in bone mass

Factors affecting peak bone mass

Development of osteoporosis: Peak bone mass vs. rate of bone loss

Risk factors for osteoporosis

Age
Caucasian or Asian
Previous fragility fracture
Positive family history
Early/surgical menopause/Estrogen deficiency/ hypogonadism in men
Low body mass index (<19 kg/m²)

Lifestyle factors

• Diet: Low calcium High protein Chronic high sodium Caffeine Phosphate beverages Smoking Alcohol Physical activity

Secondary causes of osteoporosis

- Drugs
 - Corticosteroids, Thyroxine
- Endocrine diseases
- Gastric surgery
- Multiple myeloma
- Hypopituatirism
- Inflammatory diseases
- Hypogonadism
Evaluation of osteoporosis:

• It's all about risk

Osteoporosis: Diagnosis

- Bone density is the most important predictor of fracture risk
- Central dual-energy xray absorptiometry (DEXA) is the gold standard for diagnosis

Bone Mineral Density

Category	T - score	
Normal	> -1.0	
Osteopenia	-1 to -2.5	
Osteoporosis	<u><</u> -2.5	
Severe/established osteoporosis	<-2.5 and prescence of one or more fractures	

Role of BMD in Fracture Prevention:

- 60%–80% of bone strength is related to BMD
- Decreases in bone density correspond to increases in fracture risk
- Increases in bone density correspond to fracture risk reduction

Who do we send for BMD testing?

- Risk factors for osteoporosis
- Use of any drugs that can affect bone
- Any illness that affects bone
- Low trauma fracture
- Radiographic osteopaenia

Evaluation of Osteoporosis

- Evaluate risk factors
- Evaluate for secondary causes
 - Full blood count, ESR
 - Liver functions, protein electrophoresis
 - Ca, Phosphate, parathyroid hormone, 25(OH) Vitamin D
 - Urine for Ca
 - Thyroid functions
 - Gonadal hormones
 - Markers of bone turnover

Bone markers:

- Bone formation:
 - Bone Specific ALP
 - Osteocalcin
- Bone resorption products
 - Pyridium crosslinks: Deoxypiridinoline
 - -NTX
 - -CTX

How do we decide on whether to treat:

FRAX

Treatment modalities

- Adequate nutrition
- Regular physical activity
- Avoid unhealthy lifestyle
- Pharmacologic treatment

Pharmocologic treatment

• Improving bone strength

Osteoporosis: Treatment targets

Keep bone remodeling active to remodel boneBone Formation

Treatment of osteoporosis

- Calcium and vitamin D
- Anti-resorptive
 - HRT
 - Raloxifene
 - Bisphosphonates
 - Strontium
- Anabolic agents
 - PTH
 - Strontium

Calcium in osteoporosis

- Help achieve better peak bone mass
- To maintain bone mass
- Prevent age related bone mass loss

Vitamin D

Vitamin D supplementation

- Normal diet 200IU/day
- Minimal non-toxic dose 2000IU /day
- Day in the sun 10000 IU/ day

HRT: Benefits

- Improvement or maintenance in bone mass
- Relief of vasomotor symptoms
- Risk reduction of cardiovascular disease?
- Potential benefits for:
 - Alzheimer's disease
 - Age-related macular degeneration
 - Colon cancer

HRT: Effect on BMD Postmenopausal Estrogen/Progestin Interventions (PEPI) Trial

CEE, conjugated equine estrogen; continuous administration (daily throughout the month); cyclic administration (days 1–12 of each month); MPA, medroxyprogesterone acetate; and MP, micronized progesterone.

The Writing Group for the PEPI Trial. JAMA. 1996;276:1389-1396.

HRT: Effect on Fracture Reduction

When analyzed using the numbers of fractures method, a 61% risk reduction was observed (P = 0.04)

4 Years of HRT Had No Effect on the Risk of Non-spine Fractures

Туре	E + P	Placebo	RH	p-value
Hip	12	11	1.1	.82
Any	130	138	1.0	.70

Hormone replacement therapy

Clinical Synthesis Panel on HRT Lancet1999:354;152-155

•Few prospective controlled trials

•Lowest dose that adequately prevents fracture unknown

•Long term use necessary to reduce fractures

Selective Estrogen Receptor Modulators (SERMs)

TAMOXIFEN (Nolvadex) RALOXIFENE (Evista)

Raloxifene: Effect on BMD and Bone Turnover (MORE)

Ettinger B et al. JAMA. 1999;282:637-645.

Raloxifene: Benefits and Risks

Benefits

- Improved bone mass
- Reduced number of vertebral fractures
- No breast tenderness
- No uterine bleeding or spotting
- Potential for reduced risk of breast cancer

Risks

- Hot flashes
- Leg cramps
- Deep vein thrombosis and pulmonary embolism

Nasal Calcitonin: Effect on BMD and Bone Turnover (PROOF) •Mean age 68

Treatment	Mean Change in Lumbar Spine BMD from Baseline (%)	ecrease
Placebo	0.5	ent De
100 IU	1.0	n Perc
200 IU	1.2	Media
400 IU	1.5	

■ 100 IU ■ 200 IU ■ 400 IU

Chesnut CH III et al. Am J Med. 2000;109:267-276.

Bisphosphonate treatment

- Most of these agents are very effective for treating patients with osteoporosis
 - Vertebral fracture by 60-70%
 - Multiple vertebral fractures by 75-96%
 - Hip fracture by 40-50%
 - Non-vertebral fracture by 20-35%
- In general are well tolerated
- In clinical trials, have been very safe

Bone Remodeling and Mechanism of Action

Bisphosphonates: Benefits and Risks

Benefits

- Fracture reduction
- BMD increase
- Non-hormonal

Risks

Nausea

- Upper gastrointestinal irritation
- Myalgias and arthralgias

Negative effects of bisphosphonates

- Oesophageal irritation
- Muscle and bone pain
- Atrial fibrillation
- Long term skeletal safety

Atypical femoral fracture

- Link to bisphosphonates:
 - Bone suppression with bisphosphonates
- Minor and major features
- Starts as unicortical fracture
- Associated with prolonged use of bisphosphonates

Osteonecrosis of the jaw

- ? Predilection for the jaw
 - Mechanical stress
 - High bone turnover
 - Related to infection with actinomyces
 - Forms a biofilm in mouth
 - Jaw bone formed by intramembranous ossification

Do we stop the bisphosphonates after 5 years?
Bone forming agents:

- Selectively increase population and/or activity of the osteoblasts
- Induce a positive bone tissue balance.

Parathyroid hormone:

- Intermittent injections of 1-34 PTH
- Increases the amount of bone matrix
- Restores connectivity of cancellous bone
- Increases cortical thickness
- This is associated with a decrease in the degree of mineralization

Effect of PTH on the Risk of New Vertebral Fractures

**P*<0.001 vs. Placebo

Neer R et al. N Engl J Med. 2001;344:1434-1441.

NOFSA GUIDELINES ON PTH USE

NOFSA has provided the following guidelines for the use of teriparatide:

- Severe established osteoporosis as defined by low BMD and at least 2 prevalent fractures
- Failed anti-resorptive treatment as defined by an incident fragility fracture while compliant to anti-resorptive treatment for at least 12 months or unacceptable loss of BMD on two occasions while on treatment
- Duration of therapy is presently limited to 18 months and should be followed by maintenance therapy with an anti-resorptive drug

Other anabolic agents

• Strontium ranelate

 Antiresorptive effect with stimulation of osteoblastic activity

 An uncoupling of bone remodeling resulting in a bone anabolic effect

STRONTIUM RANELATE IMPROVES TRABECULAR & CORTICAL MICROARCHITECTURE

	BPHs	Strontium ranelate
Structural Model Index	NA (AL) NS (RIS)	- 22%
Trabecular separation	NS	- 16%
Cortical Thickness	NS	+ 18%

Strontium Ranelate 36 Mo

Strontium ranelate efficacy over 5 years

Reginster JY, et al. Arthritis Rheum. 2008;58(6):1687-1695.

How we need to look at osteoporosis treatment outcomes

10-year fracture probability (FRAX)

Efficacy against fractures

F	RAX [®] WHO FI	racture Risk	Assessment 1	ōol	
н	OME CALCULATION TO	OL PAPER CHA	RTS FAQ	REFERENCES	
C	Please answer the que	estions below to	calculate the te	n year probability	of fracture w
	Country : UK	Name / ID :		About the risk fa	actors (i)
	Questionnaire:		10. Secondary oste	oporosis ⊙No	Yes
Jeight Conversion: bound:	1. Age (between 40-90 yea Age: Date of birth 65 Y:	ars) or Date of birth h: M:D:	11. Alcohol 3 or mo 12. Femoral neck E T-Score	ne units per day ⊙No MD (g/cm²) ▼ -2.3	OYes
	2. Sex Male Female 3. Weight (kg)			Clear Calc	ulate
leight Conversion: 4. Height (cm) inch : 5. Previous fracture convert 6. Parent fractured I	4. Height (cm)	165	5 BMI 20.2 The ten year probability of fracture (%)		6)
	 5. Previous fracture 6. Parent fractured hip 	⊙No ⊙Yes ⊙No ⊙Yes	with BMD	aparatic	23
	7. Current smoking	⊙No ⊙Yes	Hip fractur	9	5.5
	8. Glucocorticoids 9. Rheumatoid arthritis	⊙No ⊙Yes ⊙No ⊙Yes	View NOGG Gu	idance	

Efficacy of strontium ranelate on clinical fractures

Kanis JA, et al. Osteoporos Int. 2011 (epub)

Emerging therapies for osteoporosis: Anti-resorptives

- Present therapies:
 - RANKL inhibition
 - Denosumab: 6 monthly injection
- New targets for antiresorptives:
 - Cathepsin K inhibition
 - Odanacatib

New anabolic agents for bone:

- PTH
 - Shortening of molecule
 - Stimulation of PTH secretion (didn't work)
- The Wnt signaling pathway

Looking for targets in rare diseases

- Sclerosteosis
- Hyperostosis corticalis

Sclerostin:

- Protein produced by osteocytes
- Produced in late stages of mineralisation
- Inhibits bone formation
- Bone loading decreases sclerostin
- Absent in sclerostosis and hyperostosis corticalis
- Target for medication:
 - Antibody to sclerostin

Sclerosteosis and Van Buchem Disease

- Associated with absence/reduced production of sclerostin
- Autosomal recessive disorders
- Characterized by endosteal hyperostosis
- Resistance to fracture
- Excessive height and syndactyly (sclerosteosis)

Courtesy of Wim van Hul