Dr P Sigwadi Paediatric Nephrology

Introduction

- Prevalence 5–15 % on a single urine sample
- After a series of 4 tests only 0.1% of children had persistent positive proteinuria
- Persistent proteinuria indicates the presence of glomerular lesion
- Plays a role in the progression of any form of kidney disease to end-stage renal disease

Estimate of proteinuria on dipstix

- Diagnostic tool
 - for renal disease
 - assessing progress & response to treatment
- Mild transient proteinuria may occur with
 - febrile illnesses
 - after heavy exercise
 - dehydration

- Postural or orthostatic proteinuria
 - No proteinuria early in morning
 - Proteinuria later in the day
- Mild to moderate proteinuria may occur in
 - Acute or chronic glomerulonephritis
 - Reflux nephropathy, other forms of CKD

- Heavy proteinuria
 - Characteristic of nephrotic syndrome

Mechanisms of urine concentration

@ 2003, Elsevier Limited. All rights reserved.

Diagram of glomerular structure

Composed of 3 layers:

- A fenestrated endothelium
- The glomerular basement membrane (GBM)
- The epithelial cell (podocyte) layer with distal foot processes and interposed slit diagrams

Glomerular Filtration Barrier Podocytes

- Enclose the capillaries →form an interrupted sheet
- Have a cytoskeleton (microtubules and filaments)
- Filaments anchor the podocytes to the GBM
- Openings/filtration pores between adjacent feet

processes are bridged by slit diaphragms

Diagram of glomerular structure

- GBM = network of fibrils forming a filter
- Main component =heparan sulphate proteoglycan (HSPG)
 - \rightarrow responsible for negative charge
- Negatively charged proteins are repelled by the negative charge on the GBM – keep them
 - in the circulation

- Plasma components can pass through endothelial fenestrae
- Small molecules pass
 - across GBM
 - and through the slit pores
- Passage of albumin + larger molecules is restricted by GBM = size + charge selective

Mechanisms of proteinuria

The ability of molecules to pass through the basement membrane depends on their

- Size
- Charge
- Molecular
 configuration

Mechanisms of Proteinuria

- Barriers to glomerular filtration
 - Mechanical
 - Endothelial cells
 - Glomerular basement membrane (GBM)
 - Epithelial cells
 - Slit-pore membrane
 - Electrostatic
 - Negative charge on GBM
- Minimal change nephrotic syndrome:

Decreased negative charge of the GBM

Consequences of Massive Proteinuria

Nephrotic syndrome

- Nephrotic syndrome is a disorder that is characterized by
 - Heavy proteinuria (3-4+ proteins on Udipstick or protein:creatinine ratio>0.2 gram/mmol)
 - Oedema
 - Hyperlipidaemia
 - Hypoalbuminaemia of <25 g/L

Minimal Change Nephrotic syndrome

- Is 15x more common in children than adults
- Incidence: 2–3/100 000 per year
- M:F of 2:1
- Median age of presentation is 4 years (Range 2-6)

Features of Nephrotic syndrome

- Massive proteinuria of >40 mg/m2/hour or protein: creatinine ratio of >0.2g/mmol(1st urine sample in the morning)
- Hypoalbuminaemia of < 25 g/l
- Hyperlipidemia
- Oedema
- Haematuria 25% of patients

Pathophysiology

- Increase in permeability of the glomerular capillary wall \rightarrow massive proteinuria \downarrow S–Alb
- The cause of increased permeability is not well understood
- ▶ Induction NaK-ATPase \rightarrow Na retention \rightarrow edema
- Alterations capillary permeability \rightarrow asymmetric volume expansion

Pathophysiology

Postulates:

T-cell dysfunction leads to alteration of cytokines which causes loss of negatively charged glycoproteins within the capillary wall (Minimal Change Nephrotic Syndrome MCNS)

Pathophysiology

- Focal Segmental Glomerulosclerosis (FSGS)
- →Mutation in the podocyte protein or plasma factor produced by the lymphocytes may be responsible for increased capillary wall permeability
- \rightarrow Genetic Susceptibility

Causes of Nephrotic syndrome

- Primary (Idiopathic)
 - Minimal change disease (commonest-80%)
 - Congenital Nephrotic syndrome (Finnish type)
 - Diffuse mesangial sclerosis
 - Focal segmental glomerulosclerosis
 - Membranous nephropathy

Causes of Nephrotic syndrome

- Secondary causes
 - Infections
 - HIV
 - Hepatitis B and C
 - Cytomegalovirus
 - Congenital syphilis
 - Congenital Rubella
 - Malaria

Causes of Nephrotic syndrome

Others

- SLE
- HUS
- Drug reaction e.g ACEI, NSAID's
- Toxins e.g. mercury

Secondary causes cont

- Syndrome-associated e.g.
 - Denys-Drash syndrome
 - Frasier syndrome

Signs and symptoms

- History
 - Presenting complaint
 - History of sore throat or scarlet fever
 - Family history of renal diseases/ nephrotic syndrome
 - Birth history
 - Birth weight, placenta size
 - Raised AFP in the amniotic fluid during

Clinical examination

- Oedema-Pedal, periorbital, scrotal
- CVS: pericardial effusion
- Respiratory
 - Pleural effusions
- Abdomen:
 - Ascites
 - +/-Hepatomegaly

Peri orbital oedema

Peripheral oedema mostly in dependant parts of body

Nephrotic Syndrome

Generalised oedema (anasarca)

Oedma of genitalia

Scrotal oedema

Labial oedema

Congenital NS

= Onset in first 3 months

Baby with anasarca

= generalised oedema

Investigations

- Urine
 - Urine dipstick 3-4+ proteins,
 - May have haematuria
 - Urine microscopy- hyaline or lipid casts
 - Urine protein: creatinine ratio >0.2g/mmol
- Blood
 - Serum albumin, urea and electrolytes
 - Cholesterol
 - Complement C3 and C4

Investigations

- Blood
 - ASO Titre, Anti DNAse B
 - TPHA/RPR
 - Hepatitis B and C serology
 - CMV serology
 - HIV
 - Malaria antigen
 - Autoimmune screen

Kidney biopsy

Indications for renal biopsy

- Steroid resistant -Not responding to treatment after 4 weeks of steroid therapy
- Hypocomplementaemia
- Family history of nephrotic syndrome
- Renal impairment and persistent hypertension
- Secondary NS

Age of presentation <2 years or >6 years

Treatment of Nephrotic Syndrome

Supportive non specific treatment

Infections

- Complete immunizations before immunosupressive treatment
- Pneumococcal vaccine

Volume depletion or volume overloaded-

- IV fluid if volume contracted or
- Lasix for volume overload + oliguria / to prevent acute renal failure

Protein malnutrition

- No fluid restriction; salt intake restricted
- Protein intake not restricted, except for advanced renal failure
- Supplemental vitamins and minerals

Supportive treatment for non-remitting NS

Reno-protection – ACEI

- Monitor proteinuria aim to decrease proteinuria
- Monitor K and renal function

Thrombotic risk

Aspirin for prevention of arterial thrombosis

Decreased levels of carrier proteins/hormones

- Iron supplementation
- Supplement Vit D + Ca
- Treat hypothyroidism if present

Hyperlipidaemia

 \circ Limit cholesterol, saturated fat intake (± statin)

Steroid treatment

- Prednisone start: 2 mg/kg/day for 4 weeks
- Taper over 3-4 months steroid treatment on alternate days
- Refer if
 - No response = steroid resistant
 - Relapses within 14 days after drug is stopped = steroid dependant
 - Relapses more than 3 per year = frequently relapsing NS

Treatment of NS

- For Secondary causes of NS e.g
 - Infections- HIV ,Hepatitis B and C,

-Congenital syphilis, Malaria

Treat the specific cause

Consequences of Massive Proteinuria

Complications of Nephrotic Syndrome

- Infections
 - Capsulated organisms e.g. S pneumoniae
 - peritonitis, septicaemia & cellulitis
- Thrombosis
- Hernias

Complications of Nephrotic Syndrome

- Protein malnutrition
- \blacktriangleright Decreased levels of carrier proteins \rightarrow
 - Hypothyroidism
 - Rickets
 - Iron deficiency

References

- Johnson RJ, Feehally J. Comprehensive Clinical Nephrology.
 2nd ed. London: Mosby; 2003
- 2. Jalanko H. Pathogenesis of Proteinuria: Lessons learned from nephrin and podocin. Pediatr Nephrol 2003; 18:487-491
- D'Amico G, Bazzi C. Pathophysiology of Proteinuria. Kidney Int 2003; 63:809–825
- 4. Kliegman RM, Behrman RE, Jenson HB, Stanton BF.Nelson textbook of paediatrics. 18th ed. Saunders;2007
- 5. Rees L, Webb NJA, Brogan PA. Paediatric nephrology.1st ed. New york: Oxford; 2007
- Coovadia 's paediatrics and child health