Renal physiology III

Quantification of renal function

Dr Alida Koorts BMS 7-12 012 319 2921 akoorts@medic.up.ac.za

Transport rate

Copyright © 2009 Pearson Education, Inc.

Handling of glucose

Copyright © 2009 Pearson Education. Inc.

Threshold concentration

- plasma concentration of a solute at which it begins to appear in the urine
- characteristic of each substance
- for glucose: threshold concentration is 11 mmol/l
- glucosuria at plasma glucose concentration > 11 mmol/l (diabetes mellitus)
- T_m glucose = 16 mmol/l

Renal transport maximum (T_m)

- maximal amount of a substance that can be transported over tubular epithelium/min
- no T_m: inulin (not reabsorbed), or sodium no upper limit
- high T_m: glucose (16 mmol/min)

Clearance is a non-invasive way of measuring GFR

Definition:

The amount of plasma in ml passing through the kidneys that have been cleared of a substance in a given amount of time

> Clearance = <u>urinary excretion rate of substance (mg/min)</u> plasma concentration of the substance (mg/ml)

where the urinary excretion rate is calculated by:

urine flow rate x urine concentration of the substance

 $Clearance_{substance} = V(urine flow rate) \times [U]_{substance} / [P]_{substance}$

Measuring clearance with inulin

- inulin is a polysaccharide that comes from the dahlia root
 inulin is freely filtered and neither reabsorbed nor secreted by the nephron
- thus; inulin clearance is 125 ml/min = GFR

Example: $U_{IN} = 35 \text{ mg/ml}$ V = 0,9 ml/min $P_{IN} = 0,25 \text{ mg/ml}$ $C_{IN} = U_{IN} \times V/P_{IN}$ $= 35 \times 0,9/0,25$ $C_{IN} = 126 \text{ ml/min}$

Copyright © 2009 Pearson Education, Inc.

Creatinine clearance

- injections are not necessary as with inulin
- routinely used to assess GFR
- plasma concentrations do not vary much
- a small amount is secreted by the proximal tubule

Determination of renal blood flow

- plasma load = total amount of substance in plasma which circulates through kidneys/min
- = effective renal plasma flow (ERPF in l/min) x [substance]_{plasma} (mmol/l)
- use clearance of a substance that is cleared from the plasma in one circulation through the kidneys by filtration AND SECRETION
- PAH (para-aminohippuric acid) or diodrast
- effective renal plasma flow $= [U]_{PAH} \times V/[P]_{PAH}$

$$= C_{PAH}$$

• renal blood flow = renal plasma flow x 1/1-haematocrit

Renal blood flow determination using clearance of PAH (para-amino hippuric acid)					
Renal plasma flow	= clearance of PAH				
	$= [U]_{PAH} \times V / [P]_{PAH}$				
	= 14 mg/ml x 0.9 ml/min/0.02 mg/ml				
	= 630 ml/min				
Average PAH extraction ratio = 0.9					
		= 630/0.9			
Renal plasma flow		= 700 ml/min			
Renal blood flow	= RPF	= RPF x 1/1-Hct			
	= 700 x 1/0.55				
	= 1273 ml/min				

Substance	[] filtrate	mmol/24h filtered	mmol/24h reabsorbed	% reab- sorbed
Water		180 I	178,5 l	99
Na ⁺	142	26 000	25 850	99
К+	4	600	560	93,3
Cl	100	18 000	17 750	98,6
HCO ₃ ⁻	28	5 040	5 040	100
Glucose	4,5	800	800	100
Urea	4,8	870	460	53
Urate	0,28	50	45	90
Creatinine	0,07	12	0	0,0