### Renal physiology IV

#### Regulation of ECF volume and osmolarity Micturition

Dr Alida Koorts BMS 7-12 012 319 2921 akoorts@medic.up.ac.za

### Handling of water 1

- plasma osmolarity = 300 mosm/l
- urine volume = 1-1,5 l/day normally
- can excrete 400 ml (obligatory) @ 1200 mosm/l due to diarrhea or sweating
- or larger volumes @ 100 mosm/l (due to fluid intake)
- kidney can excrete small urine volumes of high osmolarity or large volumes with low osmolarity
- this ability depends on the "countercurrent" system and ADH

### Handling of water 2

- renal plasma flow = 650 ml/min, 125 ml/min filtered, thus 19%
- filtrate iso-osmotic to plasma = 300 mosmol/l
- 66-75% reabsorbed in <u>proximal tubule</u>, secondary to solute reabsorption, stays iso-osmotic
- loops of Henlé in <u>cortical nephrons</u>: same as proximal, juxtamedullary nephrons
- <u>collecting ducts</u>: 11% water left, ADH increases reabsorption into hyperosmotic inner medulla
- the <u>blood in the capillary beds</u> is in osmotic equilibrium with surrounding interstitial fluid

### Handling of water 3

#### Hormones regulate water processing

- ADH
- aldosterone
- renin-angiotensin II system
- natriuretic hormone
- catecholamines
- prostaglandins

### Antidiuretic hormone (ADH)

- hyperosmolality of ECF
- hypovolemia
- low blood pressure
  - cause ADH release from supra-optic nuclei in HT
  - ADH promotes synthesis of aquaporin inserted into LM of collecting ducts – act as water channels
  - ADH increases urea permeability of medullary (not cortical) collecting ducts – helps to maintain medullary hyperosmolarity during water reabsorption

### Factors affecting ADH release



Copyright © 2009 Pearson Education, Inc.

# Summary of osmolarity changes as fluid flows through the nephron



#### Water movement in the collecting duct in the presence and absence of ADH



Copyright © 2009 Pearson Education, Inc.

(a)

### ADH action mechanism



Copyright © 2009 Pearson Education, Inc.

## Concentrating of urine – the countercurrent heat exchanger



the outflowing hot blood heats the inflowing cold blood – countercurrent system in juxtamedullary nephrons is analogous

# Countercurrent multiplier in the medulla of the kidney



Copyright © 2009 Pearson Education, Inc.

#### Handling of water is also determined by Na<sup>+</sup> balance The renin-angiotensin system



# Aldosterone action in principal cells



Copyright © 2009 Pearson Education, Inc.

 $\uparrow$  synthesis of Na<sup>+</sup> channels, Na<sup>+</sup>/K<sup>+</sup>-pump and citric acid cycle enzymes

### The renin-angiotensin pathway



Copyright © 2009 Pearson Education. Inc.

# Decreased blood pressure stimulates renin secretion



Copyright @ 2009 Pearson Education, Inc.

# Regulation of ECF volume and osmolarity

- Renin-Angiotensin
  - <u>Stimuli</u>: low BP, renal perfusion pressure, osmolarity in distal tubule, sympathetic stimulation
  - <u>Effects:</u> direct and sympathetic-mediated vasoconstriction, ADH release, dipsogenic effect, aldosterone secretion, salt & water retention, salt appetite, cardiac output
  - <u>Total effect</u>: increase in blood volume and pressure
- Aldosterone
  - <u>Stimuli</u>: AT I & II, high ECF K<sup>+</sup>, suppressed by ANP
  - Effects: salt & water retention, increase in ECF volume

- ADH
  - <u>Stimuli:</u> increase in ECF osmolarity registered in terminal lamina of the HT, decrease in blood volume (atrial receptors), AT II, emotions, nausea
  - <u>Effects</u>: reabsorption of water, increase in ECF volume, decrease in osmolarity
- Thirst
  - <u>Stimuli</u>: increase in ECF osmolarity (receptors in subfornical organ), decrease in ECF volume (atrial receptors) and AT II
  - <u>Effects:</u> fluid intake, increase in ECF volume, decrease in osmolarity
- Atrial natriuretic peptide
  - <u>Stimuli:</u> stretch of cardiac muscle wall
  - <u>Effects</u>: natriuresis & diuresis, reduction in ECF volume and BP
  - NB: antagonist to AT II, aldosterone & sympathetic discharge

### Atrial natriuretic peptide



- Prostaglandins
  - <u>Stimuli</u>: vasoconstriction fall in renal perfusion pressure
  - <u>Effects</u>: vasodilation, natriuresis & diuresis, aim is to protect kidney against ischaemic damage
- Sympathetic discharge
  - <u>Stimuli</u>: decrease in blood volume and pressure and emotions
  - <u>Effects</u>: increase in cardiac output, vasoconstriction, volume conservation by the kidney

### Homeostatic responses to eating salt



Copyright © 2009 Pearson Education, Inc.

#### Free water clearance

 used to assess ability of kidneys to concentrate or dilute urine

• 
$$C_{water} = V - C_{osm} =$$
 Free water clearance  
= V -  $[U]_{osm}/[P]_{osm} \times V$ 

- (+) = large volumes hypotonic urine
- (-) = small volumes hypertonic urine

# Disturbances of volume and osmolarity

|        |           |                                                     | Osmolarity                         |                                                     |
|--------|-----------|-----------------------------------------------------|------------------------------------|-----------------------------------------------------|
|        | 10        | Decrease                                            | No change                          | Increase                                            |
| Volume | Increase  | Drinking<br>large amount<br>of water                | Ingestion of<br>isotonic<br>saline | Ingestion of<br>hypertonic<br>saline                |
|        | No change | Replacement<br>of sweat loss<br>with plain<br>water | Normal<br>volume and<br>osmolarity | Eating salt<br>without<br>drinking<br>water         |
|        | Decrease  | Incomplete<br>compensation<br>for<br>dehydration    | Hemorrhage                         | Dehydration<br>(e.g., sweat<br>loss or<br>diarrhea) |

Copyright @ 2009 Pearson Education, Inc.

### Abnormalities of water balance

- Water diuresis due to:
  - HT/pituitary diabetes insipidus
  - excessive water intake
  - suppression of ADH by alcohol
  - $\bullet$  cold diuresis, redistribution of blood increases central BP  $\rightarrow$  inhibits ADH
  - defective renal ADH receptors, defective aquaporin insertion/production (nephrogenic diabetes insipidus)

- Osmotic diuresis due to:
  - glucose-induced (diabetes mellitus)
  - diuretic-induced, mediated through NaCl
  - mannitol administration
  - glucose & NaCl, due to decline of ATP in proximal tubule (Fanconi syndrome)
  - NaCl, due to defects in the Na<sup>+</sup>-K<sup>+</sup>-pump congenital disorders

### Diuretics

- Water and alcohol inhibit ADH
- Glucose
  - glucosuria causes osmotic diuresis
- Acetazolamide (Diamox)
  - inhibits carbonic anhydrase
- Thiazides (Dichlortride)
  - inhibits proximal NaCl reabsorption
- Furosemide (Lasix)
  - inhibits NaCl reabsorption in thick ascending loop of Henlé
- Spironolactone (Aldactone)
  - inhibits aldosterone action

### Micturition

- renal calyces  $\rightarrow$  renal pelvis  $\rightarrow$  ureters (25-30 cm)  $\rightarrow$  bladder
- ureters enter bladder obliquely prevents backflow of urine
- urine transported with peristaltic waves
- "Trigone" on internal floor of bladder between openings of ureters and the urethra – position does not change
- bladder wall contains mucosa, submucosa, detrusor muscle (spiral, longitudinal, circularly arranged smooth muscle) and serosa

- internal sphincter smooth muscle
- external sphincter voluntary muscle
- detrusor muscle and internal sphincter receive sympathetic innervation from L1-2 and parasympathetic innervation from S2-4
- external sphincter supplied with somatic fibres from N pudendus
- efferent sensory fibres from bladder & post urethra to sacral spinal cord centre – in contact with brain stem and cerebral cortex



Copyright © 2009 Pearson Education, Inc.



Copyright @ 2009 Pearson Education, Inc.

#### The cystometrogram

Due to plasticity the pressure remains low until urine volume reaches about 400 ml

