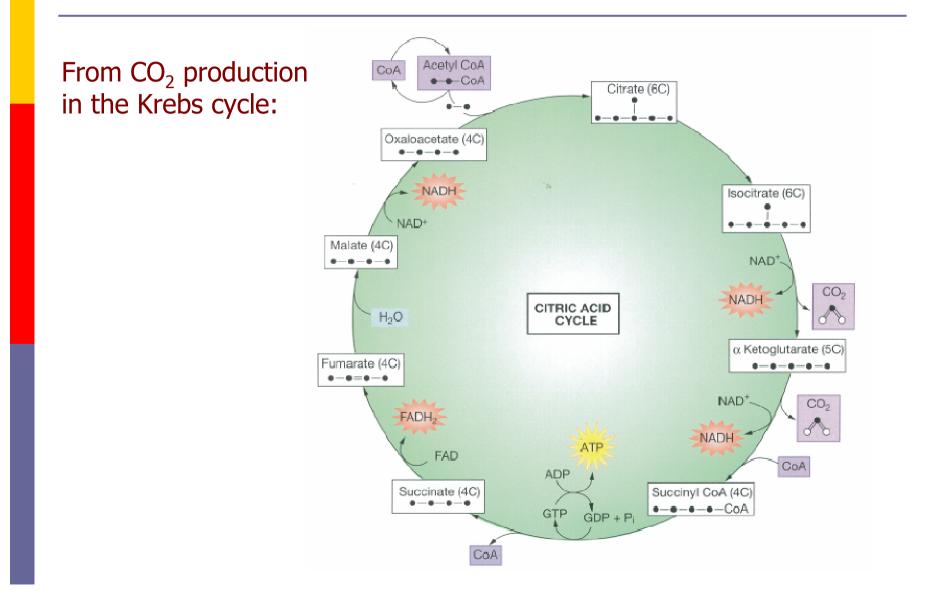
Renal physiology V

Regulation of acid-base balance

Dr Alida Koorts BMS 7-12 012 319 2921 akoorts@medic.up.ac.za

Hydrogen ions (H⁺): Concentration and origin


Concentration

```
in arterial blood, resting: [H^+] = 40 \text{ nM} = 40 \text{ x } 10^{-9} \text{ M} = 4 \text{ x } 10^{-8} \text{ M}
pH = - log [H^+]
pH = - log 4 x 10^{-8} = 7,4
in resting venous blood: 7,37
```

• Origin of H⁺

```
Dissociation of water: H_2O \rightarrow H^+ + OH^-
in pure distilled water:
[H^+] \times [OH^-] = 10^{-14} mole/l and [H^+] = [OH^-] = 10^{-7} mole/l, pH = pOH = 7
```

Metabolic origin: during muscle action: ATP \rightarrow ADP + P_i + H⁺

Then, in erythrocytes:

```
CO<sub>2</sub> + H<sub>2</sub>O

Carbonic anhydrase

Zn<sup>++</sup>

H<sub>2</sub>CO<sub>3</sub> → HCO<sub>3</sub><sup>-</sup> + H<sup>+</sup>
```

- S-containing amino acids, eg., methionine and cysteine are metabolised to $H_2SO_4: \rightarrow H^+ + HSO_4^-$
- Phosphoproteins and phospholipids are metabolised to phosphoric acid: $H_3PO_4: \rightarrow 2H^+ + HPO_4^{2-}$
- Formation of metabolic acids, eg., lactic acid, acetoacetic acid

Defence mechanisms against fluctuation in pH

A. Buffers:

- a buffer contains a buffer pair: a weak acid and its salt
- Henderson-Hasselbach equation: pH = pKa + log [salt]/[acid]

• Phosphate buffers (5% in ECF, 5% in ICF)

 $\begin{array}{ll} \text{HPO}_4^{2-} & + \text{H}^+ \rightarrow \text{H}_2\text{PO}_4^{-} \\ \text{anion (salt)} & \text{acid} \\ 4 & \vdots 1 \end{array}$

• Bicarbonate buffers (80% in ECF, 15% in ICF)

```
\begin{array}{ll} \mathsf{HCO}_3^{-} + \mathsf{H}^+ \to \mathsf{H}_2\mathsf{CO}_3 \to \mathsf{H}_2\mathsf{O} + \mathsf{CO}_2 \mbox{ (volatile)} \\ \mbox{anion (salt)} & \mbox{acid} \\ 20 & :1 \end{array}
```

Protein buffers (80% in ICF, 15% in ECF)

At body pH, certain amino acids (in proteins) dissociate to form negatively charged anions (NH₂-R-COOH \rightarrow NH₂-R-COO⁻ + H⁺). These NH₂-R-COO⁻ can then act as hydrogen acceptors. The buffer system is thus:

```
Prot.H \rightarrow H^+ + Prot^-
```

1 : 4

In erythrocytes: Hemoglobin acts as a buffer

(i) Hb is rich in histidine that can also act as a hydrogen acceptor.

(ii) $H-HbO_2$ is a stronger acid than reduced H-Hb. Thus, when $H-HbO_2$ sheds its O_2 , HHb remains. Because it is a weak acid it does not dissociate easily and the pH does not become too low.

CO₂ transport from tissues into erythrocytes:

(a) NB reactions in gas exchange:

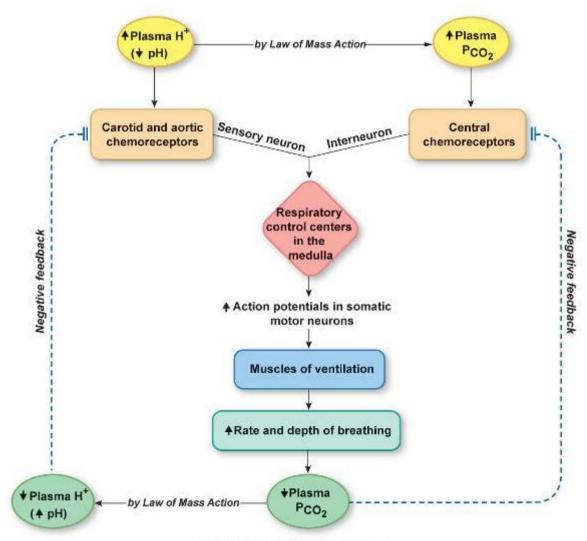
 $HbO_2 \rightarrow Hb$

 $\text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{H}^+ + \text{HCO}_3^-$

(b) Some CO₂ can bind with Hb to form carbamino Hb.

(c) HCO_{3}^{-} transported in RBC can be transported into the plasma in exchange for chloride (Hamburger).

B. The lungs:

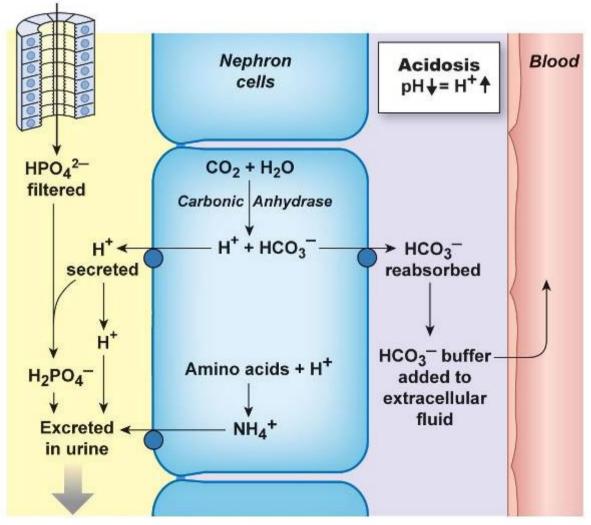

In the erythrocytes in lung capillaries:

- HbO₂ and HHbO₂ are formed
- HHbO₂ dissociates easily to form free H⁺
- $H^+ + HCO_3^- \rightarrow H_2O + CO_2$ (breathed out)
- the lower the bicarbonate in the cells, the more diffuses in from the plasma, in exchange, the plasma gets back its chloride

Indirectly:

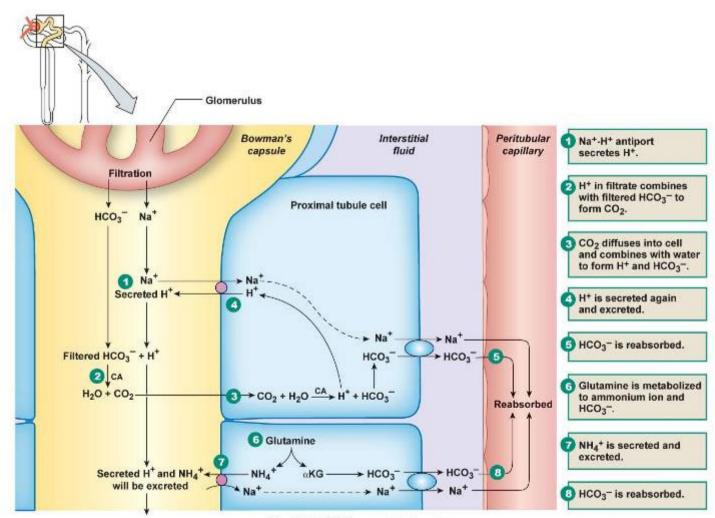
a decrease in pH (?[↑] pCO₂) stimulates the rhythmic respiratory control center in the medulla oblongata

Respiratory compensation for metabolic acidosis

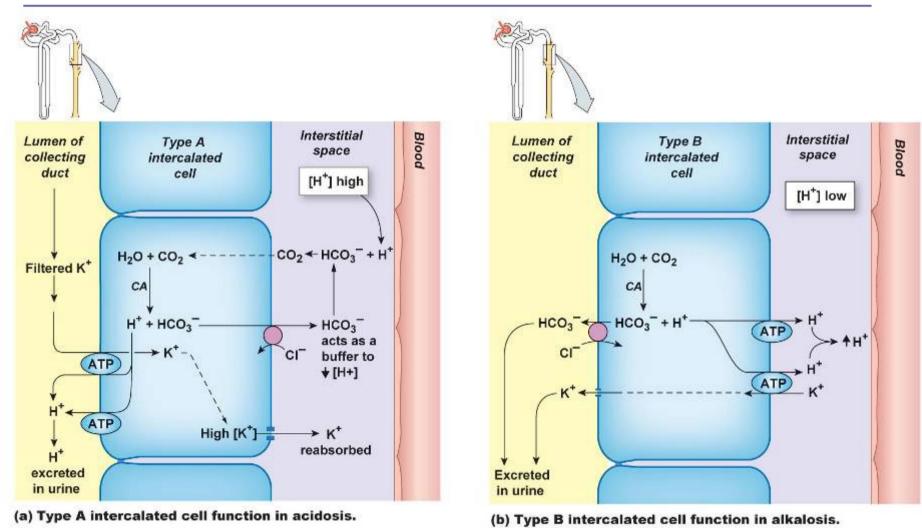


Copyright © 2009 Pearson Education, Inc.

C. The kidneys:


The glomerular filtrate has a pH of 7,4 In proximal tubule: 6,7 In collecting tubules: 5,8-4,5

Overview of renal compensation for acidosis


Copyright © 2009 Pearson Education, Inc.

Proximal tubule H⁺ secretion and reabsorption of filtered HCO₃⁻

Copyright @ 2009 Pearson Education, Inc.

Role of the intercalated cells in acidosis and alkalosis

Copyright © 2009 Pearson Education, Inc.

Copyright © 2009 Pearson Education, Inc.

• Phosphate buffers in kidneys $HPO_4^- + H^+ \rightarrow H_2PO_4^$ so that urine pH does not decrease too far

• Gluconeogenesis in kidneys the kidney also removes H⁺ by the synthesis of new glucose: $2 H_2O + 2 CO_2 \rightarrow 2H^+ + 2HCO_3^- + \text{oxoglutarate} (5C) \rightarrow \text{glucose} + CO_2$

D. The liver:

 removes H⁺ mainly by gluconeogenesis: 2H⁺ + 2lactate → glucose thus liver pathology can lead to lactic acidosis
 also: NH₃ + H⁺ → NH₄⁺

• removes HCO_3^- by urea synthesis: $HCO_3^- + NH_4^+ \rightarrow$ urea

E. The skeleton:

- during acidosis H⁺ moves into the bone matrix and reacts with calcium phosphate: $Ca_3(PO_4)_2 + 2H^+ \rightarrow 3Ca^{2+} + 2HPO_4^{2-}$
- during strong acidosis HPO_4^{2-} is liberated into ECF: \rightarrow helps with buffer action $\rightarrow H_2PO_4^{--}$

Abnormalities in acid-base balance

Respiratory origin:

Henderson-Hasselbach equation:

 $[HCO_3^-]$

pH = 6.1 + _____

log 0,031 pCO₂

thus changes in bicarbonate/ pCO_2 lead to changes in pH

Respiratory acidosis: $\uparrow pCO_2$ thus $\downarrow pH$ and $\uparrow CO_2 + H_2O \rightarrow \uparrow H^+ + \uparrow HCO_3^-$

Respiratory alkalosis: $\downarrow pCO_2$ thus $\uparrow pH$ and $\downarrow CO_2 + H_2O \leftarrow \downarrow H^+ + \downarrow HCO_3^-$ Compensation mechanisms:

Acidosis: \uparrow ventilation tempo, secretion of H⁺ and reabsorption of HCO₃⁻ in the nephron

Alkalosis: \downarrow ventilation tempo, \downarrow HCO₃⁻ reabsorption

Metabolic origin:

Metabolic acidosis:

due to acids stronger than HHb or other buffer acids, eg., lactic acid or aceto-acetic acid

 $\uparrow CO_2 + H_2O \leftarrow \uparrow H^+ + \downarrow HCO_3^-$

Compensation:

- \uparrow H⁺ stimulates ventilation tempo, under pH \rightarrow 6 \rightarrow death
- Kidneys secrete $H_{,}^{+}$ retain more Na⁺ and HCO₃⁻ buffers in the luminal fluid form $H_2PO_4^{-}$, H_2CO_3 and NH_4^{+}

Metabolic alkalosis:

due to intake of alkali (sodium bicarbonate or loss of HCl with vomiting) both the pH and the $[HCO_3^-]$ increase $\downarrow CO_2 + H_2O \rightarrow \downarrow H^+ + \uparrow HCO_3^-$

Compensation:

ventilation tempo \downarrow , thus pCO₂ \uparrow , thus pH \downarrow

SUMMARY (uncompensated conditions) NB Normal values: pH = 7,35-7,45 $pCO_2 = 35-45 \text{ mm Hg}, [HCO_3^-] = 22-26 \text{ mmol/l}$

Summary

	ACIDOSIS		ALKALOSIS	
	Respiratory	Metabolic	Respiratory	Metabolic
рН	↓	↓	↑	1
pCO ₂	↑	N	↓	N
HCO ₃ -	↑	↓	↓ ↓	↑