Symptoms and signs of chronic kidney disease (CKD)

Block 11 Prof G van Biljon

Definition of CKD in children

Chronic kidney disease (CKD) is defined as : "evidence of structural or functional kidney abnormalities (abnormal urinalysis, imaging studies or histology) that persist for at least 3 months, with or without a decreased glomerular filtration rate (GFR), as defined by a GFR of less than 60 mL/min per 1.73 m²" ⁽¹⁾

1. KDOQI clinical practice guidelines for chronic kidney disease: evaluation, classification and stratification. Kidney Disease Outcome Quality Initiative. Am J Kidney Dis 2002;39: S1-S246

National Kidney Foundation's Kidney Disease Outcomes Quality Initiative (NKF-K/DOQI) stages of chronic kidney disease

Stage	Description	GFR(mL/min/1.73m ²)
1	Kidney damage with normal/increased GFR	>90
2	Kidney damage with mild decrease in GFR	60-89
3	Moderate decrease in GFR	30-59
4	Severe decrease in GFR	15–29
5	Kidney failure	<15 or dialysis

Epidemiology and prevalence of CKD

- CKD is a common disorder of varying severity
- Merits attention of general practitioners and also needs public health approach for
 - Prevention
 - Recognition / early detection
 - Management
- CKD should not only be recognised as "life threatening disorder " affecting a few children who need the care a nephrologist

Epidemiology of CKD

- There is limited information on the epidemiology of CKD in the paediatric population
- Most epidemiological information on CKD originates from data available on endstage renal disease = when treatment with renal replacement therapy becomes necessary

Studies on the epidemiology of CKD stages 2–5 in Europe

Country [reference]	Italy [5]	Belgium [<u>13</u>]	Spain [<u>39</u>]	Sweden [<u>8</u>]	France [7]	Turkey [<u>14</u>]	
Period	1990–2000	2001–2005	2007–2008	1986–1994	1975–1990	2005	
Number of cases	1,197	143	605	118	127	282	
Inclusion criteria	0–19 years GFR<75	0–19 years CKD 3-5	0–17 years CKD 2–5	years CKD 0.5–15 years GFR<30 or SCr>120 (< 3 years), > 2–5 150 (3–9 years), > 180 (> 10 years) years)		0–18 years GFR<75	
Pediatric population covered (millions)	16.8	2.4	11.3	1.7	0.5 (Lorraine)	24.0	
Incidence (pmarp)	12.1	11.9	8.7	7.7	10.5	11.9	
Prevalence (pmarp)	74.7	56	71.1	59	59 66		
Male/female ratio	2.0	1.3	1.9	1.6 1.4		1.3	
Age at diagnosis (years)	6.9 (mean)	3.0 (median)	3.9 (mean)	3.3 and 11.3 in congenital and acquired disorders (median)	6.3 and 10.6 in congenital and acquired disorders (median)	8.o (mean)	
GFR or CKD stages at diagnosis	GFR 42 (mean)	CKD 3: 67% CKD 4: 19% CKD 5: 14%	GFR 52 (mean) CKD 2–3: 82% CKD 4–5: 18%	Pre-RRT: 57%	Pre-RRT: 76%	CKD 2-3: 38% CKD 4: 30% CKD 5: 32%	

Pediatr Nephrol. 2012 March; 27(3): 363-373.

Prevalence according to age

The North American Pediatric Renal Transplant Cooperative Study (NAPRTCS) ⁽³⁾ chronic renal insufficiency (CRI) database: 5651 patients aged 2-17 years with an estimated GFR < 75 mL/min per 1.73 m²

0-1 years	19%
2-5 years	33%
6-12 years	17%
>12 years	31%

3. Fivush BA et al. Pediatr Nephro 1998; 12:328-337

Treatment prospects of CKD

- Associated with high morbidity, mortality and high medical expenditures
- Limited resources few patients will qualify for renal replacement therapy
- Early detection and optimal management can
 Prevent development of complications
 Delay the need for dialysis / transplantation
 Prevent premature death

Origins of adult kidney disease

- Prenatal factors may have an impact on organogenesis and determine CVS events, hypertension and the risk for CKD at adult age
- Adverse prenatal factors e.g. hypertension, smoking, maternal infection/diabetes \rightarrow IUGR
- LBW is associated with ↑ risk of CKD and with ↑ rate of progression of established renal disease

1. Barker DJ. Mechanisms of disease: in utero programming in the pathogenesis of hypertension Nat Clin Pract Nephrol 2006; 2: 700-707.

2. Brenner BM et al. Glomeruli and blood pressure. Less of one, more the other? Am J Hypertension 1988; 1:335-347.

3. Dötsch. J et al. Fetal programming of renal function. Pediatr Nephrol 2012; 27: 513-520

Progression of CKD

- Initial insult → hyperfiltration of remaining glomeruli
- →self-perpetuating vicious circle of fibrosis
 →progressive renal scarring, involving all structures of kidney
- Proteinuria develops or worsens in all forms of CKD as renal function \downarrow

Detection of CKD

- Serum creatinine poor marker of renal function
- >60 % of kidney function may be lost while S- creat may remain in normal range
- S-creatinine correlates with muscle bulk, age, gender
 → falsely low in children with malnutrition
- Main manifestation : development of proteinuria and hypertension

Diagnosis of kidney disease in children

- Symptoms and signs associated with either acute or chronic renal conditions often appear to be unrelated to the kidney
- Advanced renal impairment often remains undetected because of the "functional reserve" of kidneys
- Children with advanced renal failure may have only mild

 [↑] S-urea and creatinine thus diagnosis overlooked

Complaints "unrelated" to kidney

- Poor growth from infancy throughout childhood
- Gastrointestinal complaints vomiting / constipation
- Swelling / pruritis treated for allergy
- Pale investigated for anaemia
- Bone disease treated by physiotherapist /orthopod
- Cardiomegaly referred to cardiologist
- Shortness of breath "pneumonia"
- "Convulsions /coma

Golden rules to diagnose kidney disease

To increase diagnostic yield of kidney disease (allowing diagnosis in > 90% of cases):

- Obtain a comprehensive medical and family history
- Do thorough physical examination, including growth standards and measure blood pressure
- Do urine dipstick test

History

- -Antenatal and perinatal history
- -Current problem
- -Growth and development
- -Previous illnesses, investigations & hospitalisation

Family history – with particular reference to

- -Conditions associated with inherited kidney diseases e.g. deafness
- -Congenital abnormalities of UGT
- -Hypertension
- -Relatives with chronic kidney or cardiovascular disease

Symptoms & signs of underlying kidney disease

- Poor growth
 - Stunting > wasting (Waterloo criteria)
 - Crossing growth standard lines
- Feeding problems: poor appetite, vomiting
- Polydipsia with specific preference for cold water/ice
- Constipation

Clinical examination

- Age taken into consideration
- General examination in neonate look for
 - Dysmorphic features
 - Features of recognizable syndromes
 - Potter facies
 - Flat facial profile, beaked nose, small chin
 - Low set ears
 - Contractures / hip dislocation / club feet
- Respiratory distress
 - Pulmonary hypoplasia
 - Spontaneous pneumothorax

Clinical examination

- General examination growth parameters
- JACCOL and DDD
- Vitals
- Systematic examination including
 - Skin, integument (nails and hair)
 - Musculoskeletal system
 - Abdomen, genitalia
 - All systems to be examined completely

Measure height /length

Height is measured erect from the age of 3 years

Length is measured supine from birth – 3 yrs

In older child with CKD stunting is > common than wasting

Growth chart depicting growth failure

General Examination

Look for:

- Dehydration in absence of excessive extrarenal fluid losses
- Circulation; peripheral pulses
- Fever (recurring without identified site of infection)
- Anaemia
- Nails: leuconychia / porcelain nails
- Oedema
- Jaundice (? haemolysis / ± liver disease)

Peri-orbital oedema

>In mornings after getting up

Often treated for "allergy"

Pitting peripheral oedema -Underlying nephrotic syndrome

Oedema

Differentiate between generalised and localised oedema

Here: oedema is localised over dorsal aspects of the feet

Nephrotic syndrome

Anasarka =

Generalised oedema plus

fluid collections in body

spaces, e.g. pleural and

peritoneal cavities

Neonate with

- Abdominal distention
- Fullness in the flanks
- Percussion is necessary to differentiate between fluid, solid organ/mass and air

Abdominal distension Resonant to percussion No shifting dullness Constipation due to polyuria

Dysmorphic Features

Turner Syndrome

-Stunted girl

-Skeletal deformity

–Webbed neck

-Wide spaced nippples

Potter Sequence

- Caused by compression of foetus due to oligohydramnios
- Abnormal facies
- Pulmonary hypoplasia

Prune Belly Syndrome

- Absence of abdominal muscles
- Cryptorchidism
- Dilated urinary tract
 - obstructed or
 - non-obstructed

Measuring the blood pressure

95th Percentiles of Blood Pressure for Boys for Age & Height Percentiles

Age	Systolic Blood Pressure by Percentile of Height, mmHg+							Diastolic Blood Pressure by Percentile of Height, mmHg+						
	5%	10%	25%	50%	75%	90%	95%	5%	10%	25%	50%	75%	90%	95%
1	98	99	101	103	104	107	106	54	54	55	56	57	58	58
2	101	102	104	106	108	108	110	59	59	60	61	62	63	63
3	104	105	107	109	110	109	113	63	63	64	65	66	67	67
4	106	107	109	111	112	111	115	66	67	68	69	70	71	71
5	108	109	110	112	114	112	116	69	70	71	72	73	74	74
6	109	110	112	114	115	114	117	72	72	73	74	75	76	76
7	110	111	113	115	117	115	119	74	74	71	76	77	78	78
8	111	112	114	116	118	117	120	75	76	72	78	79	79	80
9	113	114	116	118	119	119	121	76	77	74	79	80	81	81

Examine eyes and ears

Including fundoscopy

Acquired and inherited kidney disease often associated with ear or eye pathology

- Night blindness due to Retinitis Pigmentosa
- Retinal degeneration

Juvenile Nephronophthysis

Keratoconus is associated with Alport Syndrome

Impaired eye sight and painful eyes Corneal opacities in cystinosis

Eye signs associated with kidney disease

- Cataracts congenital Rubella / CMV / latrogenic
- Leucocoria = white pupil (retinoblastoma) or aniridia
 both associated with nephroblastoma (Wilm's tumour)
- Coloboma in UGT abnormalities (mutation of EYA gene)
- Hypertension hypertensive retinopathy
- Retinopathy: inherited kidney diseases

Skin abnormalities commonly associated with renal disease e.g.

Impetigo in boy with acute post streptococcal glomerulonephritis

Purpura in a patient with Henoch Schönlein Purpura (HSP)

Skin manifestations associated with collagen vascular disease e.g. in SLE / PAN Vasculitis Purpura Erythema nodosum

Skin Manifestations of SLE

Butterfly rash

Skin Manifestations of SLE

Increased nailbed capillaries

Tuberous sclerosis

 Adenoma sebaceum

Angiomyolipoma in kidneys

Musculoskeletal System

Rickets in children >2 years ≠ nutritional problem = usually due to renal tubulopathy Features **Skeletal deformities** Bone pain Spontaneous fractures Weakness/delayed motor milestones Assess hearing Check eyes

Tetany in a child with renal rickets

Renal rickets Bossing Chest deformities Hypotonia Tetany

References

- Johnson RJ, Feehally J. Comprehensive Clinical Nephrology. 2nd ed. London: Mosby; 2003
- KDOQI clinical practice guidelines for chronic kidney disease: evaluation, classification and stratification. Kidney Disease Outcome Quality Initiative. Am J Kidney Dis 2002;39: S1-S246
- 3. Pediatr Nephrol. 2007; 22(12): 1999–2009
- 4. Pediatr Nephrol. 2012; 27(3): 363–373
- 5. Fivush BA et al. Pediatr Nephrol 1998; 12:328-337
- Barker DJ. Mechanisms of disease: in utero programming in the pathogenesis of hypertension. Nat Clin Pract Nephrol 2006; 2: 700-707.
- 7. Brenner BM et al. Glomeruli and blood pressure. Less of one, more the other? Am J Hypertension 1988; 1:335-347.
- 8. Aperia A. Preventive Nephrology: A Role for the Pediatrician. J Pediatr 2012; 160(6) 896-7