# The laboratory evaluation of infectious diseases



Dr Ruth Lekalakala Tshwane Academic Division Microbiology Dept.



## Laboratory Diagnosis of Infections

We ask the lab for a diagnosis, expecting a yes or no, but often end up with just a maybe...

**Professor Mark Pallen** 

#### Microbes and humans



#### OBJECTIVES

- Know available diagnostic technologies for Infectious diseases
- Understand specific specimen for specific diagnostic test
- > Understand procedure for specimen collection
- Interpretation of the lab report

#### **Diagnosis of Bacterial Infection**



Which specimens/samples are processed in micro lab

- Site or origin
  - Central nervous system
  - > Cardiovascular
  - Gastrointestinal
  - Genitourinary
  - > Respiratory
  - Skin and soft tissue

### Classification in the lab.....

#### > Direct

- Collected from a sterile site
  - CSF, blood cultures, aspirates and biopsies
- Indirect
  - Passes through sites known to be colonized with normal flora
    - sputum and urine
- Stool ( containing normal flora)

#### Common samples from paediatrics

- Cerebrospinal fluid CSF
- > Blood cultures
- ➤ Gastric aspirates TB culture
- > Sputum/nasopharyngeal aspirates
- ≻ Stool

#### Diagnostic technologies

- > Antigen Detection Assays
- Immunochromatographic tests
- > Microscopy
- Cultures
- Sensitivities
- Molecular tests

## CSF

- Collected when CNS infection is suspected- meningitis
- > Tests done in the lab include:
  - Rapid bacterial agglutination
  - Microscopy
    - Gram stain
    - Cell count (bacterial vs viral)
  - Culture & sensitivity

## Rapid agglutination

- Point of Care Tests
  - Presence of antigen cause particles to agglutinate
  - wrong technique result in incorrect results
  - Prozone effect





#### Multiple tests on one card



#### Advantages of rapid diagnostic tests

- > High sensitivity and specificity
- > High negative and positive predictive values
- > High accuracy compared to gold standard
- Simple to perform
- Rapid turn around time
- Cost effective

## Microscopy

Gram stain is the most commonly used

- Wet prep or acid fast stain are less common
- > Used for diagnosis
  - Presence of organisms/cells in the specimen
  - Gram stain is much less sensitive than culture
- Used to assess the quality of the specimen "Q scoring"

#### Microscopy stained preparations

➤ Gram-stain



- Acid-fast stain
  - Ziehl-Neelsen



- > Fluorescence
  - Direct, e.g. auramine
  - Immunofluorescence



## Culture

- Generally one of the most definitive methods
  - Sensitivity high (less for viruses, some rare bacteria)
  - Specificity high
- Provides isolates for further testing
- > Often relatively slow
  - May take days (most commonly) to weeks (fungi, TB)
- Influenced by:
  - Types of media
  - Incubation conditions
  - Identification method

#### **Culture Media**

- May be liquid ("broth") or solid ("plates")
- Broth is used for
  - Detecting very low numbers of organisms
    - e.g. blood cultures





### Culture of Bacteria

- Solid media
  - Agar plates
    - For Identification
    - For Enumeration
  - Slopes
  - For safe long-term culture, e.g. Lowenstein-Jensen media for TB
- Liquid media (broth)
  - For enrichment or maximum sensitivity





## Advantages of Solid Media

- isolation of single clonal colonies
  - get bacterium in pure culture
- identify by colonial morphology
- > quantification by colony-forming units





## Identification of Bacteria

- Morphology
- > Growth requirements
- > Biochemistry
- Enzymes
- Antigens







## **Other Identification Methods**

Include:

- Identification of specific antigens on the organisms surface
  - Agglutination tests
  - Immuno-fluorescent microscopy
- Molecular methods
  - Nucleic acid probes
  - Genome sequencing

## Susceptibility testing methods

- Expose organism to concentration of antimicrobial
  - Antimicrobial may be in a disc
  - Antimicrobial may be in broth
  - Antimicrobial may be dissolved in the agar
- Lack of growth indicates inhibition
  - If the concentration is measured it is called the Minimal Inhibitory Concentration (MIC)
  - With discs a zone size correlates with a susceptible MIC, if the zone is bigger it is "Susceptible" if smaller it is "Resistant".

#### Disk diffusion method



## Sensitivity tests

- on solid media
  - disc diffusion technique
- ➤ in liquid media
  - minimum inhibitory concentration (MIC) test
- Breakpoint methods
- ≻ E-test







#### Report from the lab



#### **Blood** culture

- Disinfect the skin properly
- Use the appropriate culture bottles
- Inoculate the recommended amount of blood

- > Pediatric Aerobic,
- volume according to the manufacturer
- Min 1ml Max: 4ml
- Putting too much will not improve the yield.

#### Blood culture bottles



#### Blood culture machines



### Positive signal

- Take the bottle out of the machine
- Do microscopy,
  culture and sensitivity
  as described with the
  CSF



## How do we know that a given pathogen causes a specific disease?



#### LIMITATIONS OF CONVENTIONAL CLINICAL MICROBIOLOGY

#### Culture

- Labor intensive
- Need for special media
- Prolonged period of time to culture
- Some organisms are uncultivable on artificial media
- Potential health hazards
- > Antigen Detection
  - Negative tests require confirmation
  - A ffected by poor specimen collection
  - Low microbe burden

#### Automated technologies for id sens

- ≻ Vitek 2
- ≻ Microscan
- > Phoenix

Factors limiting usefulness of bacteriological investigations

- > wrong sample
  - e.g. saliva instead of sputum
- > delay in transport / inappropriate storage
  - e.g. CSF
- > overgrowth by contaminants
  - e.g. blood cultures
- insufficient sample / sampling error
  - e.g.in mycobacterial disease
- patient has received antibiotics



#### Thank you

#### Comments and question are welcomed